Schmidt am Busch Marcel, Knapp Ernst-Walter
Department of Biology, Chemistry, and Pharmacy, Institute of Chemistry, Free University of Berlin, Takustrasse 6, 14195 Berlin, Germany.
Chemphyschem. 2004 Oct 18;5(10):1513-22. doi: 10.1002/cphc.200400171.
Single-molecule studies that allow to compute pKa values, proton affinities (gas-phase acidity/basicity) and the electrostatic energy of solvation have been performed for a heterogeneous set of 26 organic compounds. Quantum mechanical density functional theory (DFT) using the Becke-half&half and B3LYP functionals on optimized molecular geometries have been carried out to investigate the energetics of gas-phase protonation. The electrostatic contribution to the solvation energies of protonated and deprotonated compounds were calculated by solving the Poisson equation using atomic charges generated by fitting the electrostatic potential derived from the molecular wave functions in vacuum. The combination of gas-phase and electrostatic solvation energies by means of the thermodynamic cycle enabled us to compute pKa values for the 26 compounds, which cover six distinct chemical groups (carboxylic acids, benzoic acids, phenols, imides, pyridines and imidazoles). The computational procedure for determining pKa values is accurate and transferable with a root-mean-square deviation of 0.53 and 0.57 pKa units and a maximum error of 1.0 pKa and 1.3 pKa units for Becke-half&half and B3LYP DFT functionals, respectively.
已对一组包含26种有机化合物的异类化合物进行了单分子研究,这些研究可用于计算pKa值、质子亲和势(气相酸度/碱度)和溶剂化静电能。利用Becke-half&half和B3LYP泛函在优化分子几何结构上进行了量子力学密度泛函理论(DFT)计算,以研究气相质子化的能量学。通过使用由拟合真空中分子波函数导出的静电势生成的原子电荷求解泊松方程,计算了质子化和去质子化化合物溶剂化能的静电贡献。借助热力学循环将气相和静电溶剂化能相结合,使我们能够计算这26种化合物的pKa值,这些化合物涵盖六个不同的化学基团(羧酸、苯甲酸、苯酚、酰亚胺、吡啶和咪唑)。确定pKa值的计算程序准确且具有可转移性,对于Becke-half&half和B3LYP DFT泛函,均方根偏差分别为0.53和0.57个pKa单位,最大误差分别为1.0个pKa单位和1.3个pKa单位。