Suppr超能文献

质子转移反应和蛋白质环境中的氢键网络。

Proton transfer reactions and hydrogen-bond networks in protein environments.

机构信息

Department of Biological Sciences, Graduate School of Science, Osaka University, , Machikaneyama-cho 1-1, Toyonaka 560-0043, Japan.

出版信息

J R Soc Interface. 2013 Nov 27;11(91):20130518. doi: 10.1098/rsif.2013.0518. Print 2014 Feb 6.

Abstract

In protein environments, proton transfer reactions occur along polar or charged residues and isolated water molecules. These species consist of H-bond networks that serve as proton transfer pathways; therefore, thorough understanding of H-bond energetics is essential when investigating proton transfer reactions in protein environments. When the pKa values (or proton affinity) of the H-bond donor and acceptor moieties are equal, significantly short, symmetric H-bonds can be formed between the two, and proton transfer reactions can occur in an efficient manner. However, such short, symmetric H-bonds are not necessarily stable when they are situated near the protein bulk surface, because the condition of matching pKa values is opposite to that required for the formation of strong salt bridges, which play a key role in protein-protein interactions. To satisfy the pKa matching condition and allow for proton transfer reactions, proteins often adjust the pKa via electron transfer reactions or H-bond pattern changes. In particular, when a symmetric H-bond is formed near the protein bulk surface as a result of one of these phenomena, its instability often results in breakage, leading to large changes in protein conformation.

摘要

在蛋白质环境中,质子转移反应沿着极性或带电残基和孤立的水分子发生。这些物质由氢键网络组成,充当质子转移途径;因此,在研究蛋白质环境中的质子转移反应时,透彻了解氢键的能量学至关重要。当氢键供体和受体部分的 pKa 值(或质子亲和力)相同时,可以在两者之间形成显著短而对称的氢键,质子转移反应可以以有效的方式发生。然而,当这些短而对称的氢键位于蛋白质本体表面附近时,它们不一定稳定,因为匹配 pKa 值的条件与形成强盐桥的条件相反,盐桥在蛋白质-蛋白质相互作用中起着关键作用。为了满足 pKa 匹配条件并允许质子转移反应,蛋白质通常通过电子转移反应或氢键模式变化来调节 pKa。特别是,当由于这些现象之一在蛋白质本体表面附近形成对称氢键时,其不稳定性通常导致其断裂,导致蛋白质构象发生大的变化。

相似文献

1
Proton transfer reactions and hydrogen-bond networks in protein environments.质子转移反应和蛋白质环境中的氢键网络。
J R Soc Interface. 2013 Nov 27;11(91):20130518. doi: 10.1098/rsif.2013.0518. Print 2014 Feb 6.
9
A Continuum of Proton-Coupled Electron Transfer Reactivity.质子耦合电子转移反应性的连续统。
Acc Chem Res. 2018 Oct 16;51(10):2391-2399. doi: 10.1021/acs.accounts.8b00319. Epub 2018 Sep 20.

引用本文的文献

2
Photosystem II: Probing Protons and Breaking Barriers.光系统II:探测质子与突破障碍
Biochemistry. 2025 May 6;64(9):1895-1906. doi: 10.1021/acs.biochem.5c00112. Epub 2025 Apr 7.
8
Energetics of the H-Bond Network in Rhodopsin.视紫红质中氢键网络的能量学
Biochemistry. 2024 Jun 4;63(11):1505-1512. doi: 10.1021/acs.biochem.4c00182. Epub 2024 May 14.

本文引用的文献

1
Mechanism of tyrosine D oxidation in Photosystem II.光系统 II 中天冬氨酸 D 氧化的机制。
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7690-5. doi: 10.1073/pnas.1300817110. Epub 2013 Apr 18.
2
Mechanism of proton-coupled quinone reduction in Photosystem II.光系统 II 中质子偶联的醌还原机制。
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):954-9. doi: 10.1073/pnas.1212957110. Epub 2012 Dec 31.
3
Formation of an unusually short hydrogen bond in photoactive yellow protein.光活性黄色蛋白中异常短氢键的形成。
Biochim Biophys Acta. 2013 Mar;1827(3):387-94. doi: 10.1016/j.bbabio.2012.11.009. Epub 2012 Nov 29.
6
Energetics of short hydrogen bonds in photoactive yellow protein.光致变色黄色蛋白中短氢键的能量。
Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):167-72. doi: 10.1073/pnas.1113599108. Epub 2011 Dec 15.
9
Charge separation in photosystem II: a comparative and evolutionary overview.光系统II中的电荷分离:比较与进化概述
Biochim Biophys Acta. 2012 Jan;1817(1):26-43. doi: 10.1016/j.bbabio.2011.07.012. Epub 2011 Jul 30.
10
Light-induced quinone reduction in photosystem II.光系统II中光诱导的醌还原
Biochim Biophys Acta. 2012 Jan;1817(1):44-65. doi: 10.1016/j.bbabio.2011.05.021. Epub 2011 Jun 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验