Grimes Brenda R, Babcock Jennifer, Rudd M Katharine, Chadwick Brian, Willard Huntington F
Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA.
Genome Biol. 2004;5(11):R89. doi: 10.1186/gb-2004-5-11-r89. Epub 2004 Oct 27.
Human centromere regions are characterized by the presence of alpha-satellite DNA, replication late in S phase and a heterochromatic appearance. Recent models propose that the centromere is organized into conserved chromatin domains in which chromatin containing CenH3 (centromere-specific H3 variant) at the functional centromere (kinetochore) forms within regions of heterochromatin. To address these models, we assayed formation of heterochromatin and euchromatin on de novo human artificial chromosomes containing alpha-satellite DNA. We also examined the relationship between chromatin composition and replication timing of artificial chromosomes.
Heterochromatin factors (histone H3 lysine 9 methylation and HP1alpha) were enriched on artificial chromosomes estimated to be larger than 3 Mb in size but depleted on those smaller than 3 Mb. All artificial chromosomes assembled markers of euchromatin (histone H3 lysine 4 methylation), which may partly reflect marker-gene expression. Replication timing studies revealed that the replication timing of artificial chromosomes was heterogeneous. Heterochromatin-depleted artificial chromosomes replicated in early S phase whereas heterochromatin-enriched artificial chromosomes replicated in mid to late S phase.
Centromere regions on human artificial chromosomes and host chromosomes have similar amounts of CenH3 but exhibit highly varying degrees of heterochromatin, suggesting that only a small amount of heterochromatin may be required for centromere function. The formation of euchromatin on all artificial chromosomes demonstrates that they can provide a chromosome context suitable for gene expression. The earlier replication of the heterochromatin-depleted artificial chromosomes suggests that replication late in S phase is not a requirement for centromere function.
人类着丝粒区域的特征是存在α-卫星DNA,在S期后期复制以及呈现异染色质外观。最近的模型提出,着丝粒被组织成保守的染色质结构域,其中在功能着丝粒(动粒)处含有CenH3(着丝粒特异性H3变体)的染色质在异染色质区域内形成。为了验证这些模型,我们检测了含有α-卫星DNA的新生人类人工染色体上异染色质和常染色质的形成情况。我们还研究了人工染色体的染色质组成与复制时间之间的关系。
异染色质因子(组蛋白H3赖氨酸9甲基化和HP1α)在估计大小大于3 Mb的人工染色体上富集,但在小于3 Mb的人工染色体上则减少。所有人工染色体都组装了常染色质标记(组蛋白H3赖氨酸4甲基化),这可能部分反映了标记基因的表达。复制时间研究表明,人工染色体的复制时间是异质的。缺乏异染色质的人工染色体在S期早期复制,而富含异染色质的人工染色体在S期中后期复制。
人类人工染色体和宿主染色体上的着丝粒区域具有相似数量的CenH3,但异染色质程度差异很大,这表明着丝粒功能可能仅需要少量异染色质。所有人工染色体上常染色质的形成表明它们可以提供适合基因表达的染色体环境。缺乏异染色质的人工染色体较早复制,这表明S期后期复制不是着丝粒功能的必要条件。