Biot Christophe, Bauer Holger, Schirmer R Heiner, Davioud-Charvet Elisabeth
Bioinformatique Génomique et Structurale, CP 165/61, Université Libre de Bruxelles, 50 Av. F. D. Roosevelt, B-1050 Brussels, Belgium.
J Med Chem. 2004 Nov 18;47(24):5972-83. doi: 10.1021/jm0497545.
Plasmodium parasites are exposed to elevated fluxes of reactive oxygen species during intraerythrocytic life. The most important antioxidative systems are based on the glutathione reductases of the malarial parasite Plasmodium falciparum and the host erythrocyte. The development of menadione chemistry has led to the selection of the carboxylic acid 6-[2'-(3'-methyl)-1',4'-naphthoquinolyl] hexanoic acid M(5) as an inhibitor of the parasitic enzyme. As reported here, revisiting the mechanism of M(5) action revealed an uncompetitive inhibition type with respect to both NADPH and glutathione disulfide. Masking the polarity of the acidic function of M(5) by ester or amide bonds improved antiplasmodial activity. Bioisosteric replacement of the carboxylic function by tetrazole to increase bioavailability and to maintain comparable acidity led to improved antimalarial properties as well, but only with the cyanoethyl-protected tetrazoles. Using computed ab initio quantum methods, detailed analyses of the electronic profiles and the molecular properties evidenced the similarity of M(5) and the bioisoteric tetrazole T(4). The potential binding site of these molecules is discussed in light of the recently solved crystallographic structure of P. falciparum enzyme.
疟原虫在红细胞内生存期间会暴露于升高的活性氧通量中。最重要的抗氧化系统基于疟原虫恶性疟原虫和宿主红细胞的谷胱甘肽还原酶。甲萘醌化学的发展导致选择羧酸6-[2'-(3'-甲基)-1',4'-萘醌基]己酸M(5)作为寄生酶的抑制剂。如本文所报道,重新审视M(5)的作用机制揭示了其对NADPH和谷胱甘肽二硫化物均为非竞争性抑制类型。通过酯键或酰胺键掩盖M(5)酸性官能团的极性可提高抗疟活性。用四唑生物电子等排体取代羧基功能以提高生物利用度并保持相当的酸度也导致抗疟性能得到改善,但仅适用于氰基乙基保护的四唑。使用从头算量子计算方法,对电子分布和分子性质的详细分析证明了M(5)与生物电子等排体四唑T(4)的相似性。根据最近解析的恶性疟原虫酶的晶体结构讨论了这些分子的潜在结合位点。