Suppr超能文献

通过化学遗传学和蛋白质组芯片寻找雷帕霉素靶蛋白(TOR)信号网络的新组分。

Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips.

作者信息

Huang Jing, Zhu Heng, Haggarty Stephen J, Spring David R, Hwang Heejun, Jin Fulai, Snyder Michael, Schreiber Stuart L

机构信息

Howard Hughes Medical Institute, Harvard Institute of Chemistry and Cell Biology, and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16594-9. doi: 10.1073/pnas.0407117101. Epub 2004 Nov 11.

Abstract

The TOR (target of rapamycin) proteins play important roles in nutrient signaling in eukaryotic cells. Rapamycin treatment induces a state reminiscent of the nutrient starvation response, often resulting in growth inhibition. Using a chemical genetic modifier screen, we identified two classes of small molecules, small-molecule inhibitors of rapamycin (SMIRs) and small-molecule enhancers of rapamycin (SMERs), that suppress and augment, respectively, rapamycin's effect in the yeast Saccharomyces cerevisiae. Probing proteome chips with biotinylated SMIRs revealed putative intracellular target proteins, including Tep1p, a homolog of the mammalian PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumor suppressor, and Ybr077cp (Nir1p), a protein of previously unknown function that we show to be a component of the TOR signaling network. Both SMIR target proteins are associated with PI(3,4)P2, suggesting a mechanism of regulation of the TOR pathway involving phosphatidylinositides. Our results illustrate the combined use of chemical genetics and proteomics in biological discovery and map a path for creating useful therapeutics for treating human diseases involving the TOR pathway, such as diabetes and cancer.

摘要

雷帕霉素靶蛋白(TOR)在真核细胞的营养信号传导中发挥重要作用。雷帕霉素处理会诱导出一种类似于营养饥饿反应的状态,常常导致生长抑制。通过化学遗传学修饰筛选,我们鉴定出两类小分子,即雷帕霉素小分子抑制剂(SMIRs)和雷帕霉素小分子增强剂(SMERs),它们分别抑制和增强雷帕霉素在酿酒酵母中的作用。用生物素化的SMIRs探测蛋白质组芯片揭示了假定的细胞内靶蛋白,包括Tep1p,它是哺乳动物10号染色体缺失的磷酸酶和张力蛋白同源物(PTEN)肿瘤抑制因子的同源物,以及Ybr077cp(Nir1p),一种功能先前未知的蛋白质,我们发现它是TOR信号网络的一个组成部分。这两种SMIR靶蛋白都与PI(3,4)P2相关,提示了一种涉及磷脂酰肌醇的TOR途径调控机制。我们的结果说明了化学遗传学和蛋白质组学在生物学发现中的联合应用,并为开发治疗涉及TOR途径的人类疾病(如糖尿病和癌症)的有用疗法绘制了一条路径。

相似文献

1
Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips.
Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16594-9. doi: 10.1073/pnas.0407117101. Epub 2004 Nov 11.
5
Microarray-based method for monitoring yeast overexpression strains reveals small-molecule targets in TOR pathway.
Nat Chem Biol. 2006 Feb;2(2):103-9. doi: 10.1038/nchembio762. Epub 2006 Jan 15.
6
A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR).
Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13227-32. doi: 10.1073/pnas.240444197.
7
Control of translation by the target of rapamycin proteins.
Prog Mol Subcell Biol. 2001;27:143-74. doi: 10.1007/978-3-662-09889-9_6.
8
The yeast eIF4E-associated protein Eap1p attenuates GCN4 translation upon TOR-inactivation.
FEBS Lett. 2005 Apr 25;579(11):2433-8. doi: 10.1016/j.febslet.2005.03.043.
9
Halcyon days of TOR: Reflections on the multiple independent discovery of the yeast and mammalian TOR proteins.
Gene. 2019 Apr 15;692:145-155. doi: 10.1016/j.gene.2018.12.046. Epub 2019 Jan 9.
10
Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast.
J Biol Chem. 2002 Nov 8;277(45):43495-504. doi: 10.1074/jbc.M205408200. Epub 2002 Aug 8.

引用本文的文献

1
Tau is a receptor with low affinity for glucocorticoids and is required for glucocorticoid-induced bone loss.
Cell Res. 2025 Jan;35(1):23-44. doi: 10.1038/s41422-024-01016-0. Epub 2025 Jan 2.
2
AI approaches for the discovery and validation of drug targets.
Camb Prism Precis Med. 2024 May 24;2:e7. doi: 10.1017/pcm.2024.4. eCollection 2024.
3
Phenotype and target-based chemical biology investigations in cancers.
Natl Sci Rev. 2019 Nov;6(6):1111-1127. doi: 10.1093/nsr/nwy124. Epub 2018 Nov 1.
4
and Caffeine Implications on the Eukaryotic Cell.
Nutrients. 2020 Aug 13;12(8):2440. doi: 10.3390/nu12082440.
5
Developments and Applications of Functional Protein Microarrays.
Mol Cell Proteomics. 2020 Jun;19(6):916-927. doi: 10.1074/mcp.R120.001936. Epub 2020 Apr 17.
7
Turning liabilities into opportunities: Off-target based drug repurposing in cancer.
Semin Cancer Biol. 2021 Jan;68:209-229. doi: 10.1016/j.semcancer.2020.02.003. Epub 2020 Feb 7.
9
Chemical Biology Strategies to Study Autophagy.
Front Cell Dev Biol. 2018 Nov 27;6:160. doi: 10.3389/fcell.2018.00160. eCollection 2018.
10
Changes of Cell Biochemical States Are Revealed in Protein Homomeric Complex Dynamics.
Cell. 2018 Nov 15;175(5):1418-1429.e9. doi: 10.1016/j.cell.2018.09.050. Epub 2018 Oct 25.

本文引用的文献

1
Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast.
Mol Cell Biol. 2004 Jan;24(1):338-51. doi: 10.1128/MCB.24.1.338-351.2004.
2
Proteomics: where's Waldo in yeast?
Nature. 2003 Oct 16;425(6959):671-2. doi: 10.1038/425671a.
3
Raptor and mTOR: subunits of a nutrient-sensitive complex.
Curr Top Microbiol Immunol. 2004;279:259-70. doi: 10.1007/978-3-642-18930-2_15.
4
Protein analysis on a proteomic scale.
Nature. 2003 Mar 13;422(6928):208-15. doi: 10.1038/nature01512.
5
Tor signalling in bugs, brain and brawn.
Nat Rev Mol Cell Biol. 2003 Feb;4(2):117-26. doi: 10.1038/nrm1018.
6
Transcriptional regulatory networks in Saccharomyces cerevisiae.
Science. 2002 Oct 25;298(5594):799-804. doi: 10.1126/science.1075090.
7
Functional profiling of the Saccharomyces cerevisiae genome.
Nature. 2002 Jul 25;418(6896):387-91. doi: 10.1038/nature00935.
8
The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation.
Mol Cell Biol. 2002 Aug;22(15):5575-84. doi: 10.1128/MCB.22.15.5575-5584.2002.
9
Mechanisms of resistance to rapamycins.
Drug Resist Updat. 2001 Dec;4(6):378-91. doi: 10.1054/drup.2002.0227.
10
Rapamycin's resurrection: a new way to target the cancer cell cycle.
J Natl Cancer Inst. 2001 Oct 17;93(20):1517-9. doi: 10.1093/jnci/93.20.1517.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验