Belin M W, Litoff D, Strods S J, Winn S S, Smith R S
Department of Ophthalmology, Albany Medical College, New York 12203.
Refract Corneal Surg. 1992 Jan-Feb;8(1):88-96.
Computer-assisted videokeratography has emerged as a useful clinical and research tool. All of the currently available commercial units utilize a modified placido disk image and require a smooth reflective surface. The PAR Technology Corneal Topography System (PAR CTS) is a prototype of a new computer-assisted corneal imaging device. The system produces a true topographic map (elevation map) by analyzing a projected grid on the corneal surface, as opposed to a placido disk reflection, and utilizes the technique of raster photogrammetry to define elevation points on the corneal surface. Because the system defines elevation points, not curvature, mathematical modeling is easily accomplished. Current software displays include a true topographic map, a spherical subtraction map in both relative and absolute scales, and a meridian analysis that is adapted to display refractive photoablative surgery.
We evaluated the accuracy of this device by analyzing three calibrated test spheres (55.76, 42.21, and 33.55 diopters). The test spheres were steel balls coated with a thin white silicone polyester coating that was necessary for grid projection. The test spheres were measured by a Taylor-Hobson contact profilometer possessing submicron accuracy. To determine the reproducibility of the system, three investigators measured three noncalibrated balls (20 mm, 18 mm, and 12 mm). The optical system was purposely decentered and refocused after each reading.
Utilizing the CTS custom optics, system accuracy at the 8-millimeter test area was 0.03 (SD 0.03), 0.00, (SD 0.02), and 0.07 (SD 0.01) D respectively. Smaller diameter test areas resulted in a predicted loss of accuracy. Maximum intraobserver variability was 0.09, 0.06, and 0.11 D respectively, and maximum interobserver variability measured 0.18, 0.12, and 0.16 D.
These data demonstrate that the PAR CTS is both highly accurate and reproducible in determining topography of spheres that approximate the curvature of the human cornea.
计算机辅助的视频角膜地形图仪已成为一种有用的临床和研究工具。所有现有的商用设备都采用改良的普拉西多盘图像,并且需要光滑的反射表面。PAR技术角膜地形图系统(PAR CTS)是一种新型计算机辅助角膜成像设备的原型。该系统通过分析角膜表面上投射的网格来生成真实的地形图(高度图),而不是通过普拉西多盘反射,并利用光栅摄影测量技术来确定角膜表面上的高度点。由于该系统定义的是高度点而非曲率,因此数学建模很容易完成。当前的软件显示包括真实的地形图、相对和绝对尺度的球面减法图,以及适用于显示屈光性光凝手术的子午线分析图。
我们通过分析三个校准的测试球(55.76、42.21和33.55屈光度)来评估该设备的准确性。测试球是涂有薄白色硅酮聚酯涂层的钢球,这对于网格投影是必需的。测试球由具有亚微米精度的泰勒-霍布森接触轮廓仪测量。为了确定该系统的可重复性,三名研究人员测量了三个未校准的球(20毫米、18毫米和12毫米)。每次读数后故意使光学系统偏心并重新聚焦。
使用CTS定制光学器件,在8毫米测试区域的系统精度分别为0.03(标准差0.03)、0.00(标准差0.02)和0.07(标准差0.01)屈光度。较小直径的测试区域导致预测的精度损失。观察者内最大变异性分别为0.09、0.06和0.11屈光度,观察者间最大变异性为0.18、0.12和0.16屈光度。
这些数据表明,PAR CTS在确定接近人眼角膜曲率的球体的地形图方面既高度准确又可重复。