Trbovic Nikola, Smirnov Serge, Zhang Fengli, Brüschweiler Rafael
Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA.
J Magn Reson. 2004 Dec;171(2):277-83. doi: 10.1016/j.jmr.2004.08.007.
Covariance NMR is demonstrated for homonuclear 2D NMR data collected using the hypercomplex and TPPI methods. Absorption mode 2D spectra are obtained by application of the square-root operation to the covariance matrices. The resulting spectra closely resemble the 2D Fourier transformation spectra, except that they are fully symmetric with the spectral resolution along both dimensions determined by the favorable resolution achievable along omega2. An efficient method is introduced for the calculation of the square root of the covariance spectrum by applying a singular value decomposition (SVD) directly to the mixed time-frequency domain data matrix. Applications are shown for 2D NOESY and 2QF-COSY data sets and computational benchmarks are given for data matrix dimensions typically encountered in practice. The SVD implementation makes covariance NMR amenable to routine applications.
协方差核磁共振已通过使用超复数和TPPI方法收集的同核二维核磁共振数据得到证明。通过对协方差矩阵应用平方根运算可获得吸收模式二维谱。所得谱与二维傅里叶变换谱非常相似,只是它们是完全对称的,且沿两个维度的谱分辨率由沿ω2可实现的良好分辨率决定。通过直接对混合时频域数据矩阵应用奇异值分解(SVD),引入了一种计算协方差谱平方根的有效方法。展示了二维NOESY和2QF-COSY数据集的应用,并给出了实际中常见数据矩阵维度的计算基准。SVD实现使协方差核磁共振适用于常规应用。