Suppr超能文献

基于奇异值分解的协方差核磁共振光谱学。

Covariance NMR spectroscopy by singular value decomposition.

作者信息

Trbovic Nikola, Smirnov Serge, Zhang Fengli, Brüschweiler Rafael

机构信息

Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA.

出版信息

J Magn Reson. 2004 Dec;171(2):277-83. doi: 10.1016/j.jmr.2004.08.007.

Abstract

Covariance NMR is demonstrated for homonuclear 2D NMR data collected using the hypercomplex and TPPI methods. Absorption mode 2D spectra are obtained by application of the square-root operation to the covariance matrices. The resulting spectra closely resemble the 2D Fourier transformation spectra, except that they are fully symmetric with the spectral resolution along both dimensions determined by the favorable resolution achievable along omega2. An efficient method is introduced for the calculation of the square root of the covariance spectrum by applying a singular value decomposition (SVD) directly to the mixed time-frequency domain data matrix. Applications are shown for 2D NOESY and 2QF-COSY data sets and computational benchmarks are given for data matrix dimensions typically encountered in practice. The SVD implementation makes covariance NMR amenable to routine applications.

摘要

协方差核磁共振已通过使用超复数和TPPI方法收集的同核二维核磁共振数据得到证明。通过对协方差矩阵应用平方根运算可获得吸收模式二维谱。所得谱与二维傅里叶变换谱非常相似,只是它们是完全对称的,且沿两个维度的谱分辨率由沿ω2可实现的良好分辨率决定。通过直接对混合时频域数据矩阵应用奇异值分解(SVD),引入了一种计算协方差谱平方根的有效方法。展示了二维NOESY和2QF-COSY数据集的应用,并给出了实际中常见数据矩阵维度的计算基准。SVD实现使协方差核磁共振适用于常规应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验