Ui S, Takusagawa Y, Sato T, Ohtsuki T, Mimura A, Ohkuma M, Kudo T
Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Yamanashi University, Kofu, Yamanashi, Japan.
Lett Appl Microbiol. 2004;39(6):533-7. doi: 10.1111/j.1472-765X.2004.01622.x.
A metabolic pathway for L-2,3-butanediol (BD) as the main product has not yet been found. To rectify this situation, we attempted to produce L-BD from diacetyl (DA) by producing simultaneous expression of diacetyl reductase (DAR) and L-2,3-butanediol dehydrogenase (BDH) using transgenic bacteria, Escherichia coli JM109/pBUD-comb.
The meso-BDH of Klebsiella pneumoniae was used for its DAR activity to convert DA to L-acetoin (AC) and the L-BDH of Brevibacterium saccharolyticum was used to reduce L-AC to L-BD. The respective gene coding each enzyme was connected in tandem to the MCS of pFLAG-CTC (pBUD-comb). The divided addition of DA as a source, addition of 2% glucose, and the combination of static and shaking culture was effective for the production.
L-BD (2200 mg l(-1)) was generated from 3000 mg l(-1) added of DA, which corresponded to a 73% conversion rate. Meso-BD as a by-product was mixed by 2% at most.
An enzyme system for converting DA to L-BD was constructed with a view to using DA-producing bacteria in the future.
尚未发现以L-2,3-丁二醇(BD)作为主要产物的代谢途径。为纠正这种情况,我们尝试通过使用转基因细菌大肠杆菌JM109/pBUD-comb同时表达双乙酰还原酶(DAR)和L-2,3-丁二醇脱氢酶(BDH),从双乙酰(DA)生产L-BD。
利用肺炎克雷伯菌的中-2,3-丁二醇脱氢酶的双乙酰还原酶活性将双乙酰转化为L-乙偶姻(AC),并利用解糖短杆菌的L-2,3-丁二醇脱氢酶将L-乙偶姻还原为L-2,3-丁二醇。将编码每种酶的各自基因串联连接到pFLAG-CTC(pBUD-comb)的多克隆位点。将双乙酰作为来源进行分次添加、添加2%葡萄糖以及静态培养和振荡培养相结合对生产是有效的。
从添加的3000 mg l⁻¹双乙酰中产生了2200 mg l⁻¹的L-2,3-丁二醇,转化率为73%。作为副产物的中-2,3-丁二醇最多混入2%。
构建了一种将双乙酰转化为L-2,3-丁二醇的酶系统,以期未来使用产双乙酰的细菌。