Wang Yu, Li Lixiang, Ma Cuiqing, Gao Chao, Tao Fei, Xu Ping
1] State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China [2] State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China.
Sci Rep. 2013;3:2643. doi: 10.1038/srep02643.
(2S,3S)-2,3-Butanediol ((2S,3S)-2,3-BD) is a potentially valuable liquid fuel and an excellent building block in asymmetric synthesis. In this study, cofactor engineering was applied to improve the efficiency of (2S,3S)-2,3-BD production and simplify the product purification. Two NADH regeneration enzymes, glucose dehydrogenase and formate dehydrogenase (FDH), were introduced into Escherichia coli with 2,3-BD dehydrogenase, respectively. Introduction of FDH resulted in higher (2S,3S)-2,3-BD concentration, productivity and yield from diacetyl, and large increase in the intracellular NADH concentration. In fed-batch bioconversion, the final titer, productivity and yield of (2S,3S)-2,3-BD on diacetyl reached 31.7 g/L, 2.3 g/(L·h) and 89.8%, the highest level of (2S,3S)-2,3-BD production thus far. Moreover, cosubstrate formate was almost totally converted to carbon dioxide and no organic acids were produced. The biocatalytic process presented should be a promising route for biotechnological production of NADH-dependent microbial metabolites.
(2S,3S)-2,3-丁二醇((2S,3S)-2,3-BD)是一种具有潜在价值的液体燃料,也是不对称合成中一种出色的起始原料。在本研究中,应用辅因子工程来提高(2S,3S)-2,3-BD的生产效率并简化产物纯化。分别将两种NADH再生酶,葡萄糖脱氢酶和甲酸脱氢酶(FDH)与2,3-BD脱氢酶一起引入大肠杆菌中。引入FDH导致(2S,3S)-2,3-BD浓度、生产率以及由二乙酰生成(2S,3S)-2,3-BD的产率更高,并且细胞内NADH浓度大幅增加。在补料分批生物转化中,(2S,3S)-2,3-BD对二乙酰的最终滴度、生产率和产率分别达到31.7 g/L、2.3 g/(L·h)和89.8%,这是迄今为止(2S,3S)-2,3-BD生产的最高水平。此外,共底物甲酸几乎完全转化为二氧化碳,并且没有产生有机酸。所呈现的生物催化过程应该是生物技术生产依赖NADH的微生物代谢产物的一条有前景的途径。