Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
Microb Cell Fact. 2018 Nov 30;17(1):190. doi: 10.1186/s12934-018-1038-0.
Efficient microbial production of chemicals is often hindered by the cytotoxicity of the products or by the pathogenicity of the host strains. Hence 2,3-butanediol, an important drop-in chemical, is an interesting alternative target molecule for microbial synthesis since it is non-cytotoxic. Metabolic engineering of non-pathogenic and industrially relevant microorganisms, such as Escherichia coli, have already yielded in promising 2,3-butanediol titers showing the potential of microbial synthesis of 2,3-butanediol. However, current microbial 2,3-butanediol production processes often rely on yeast extract as expensive additive, rendering these processes infeasible for industrial production.
The aim of this study was to develop an efficient 2,3-butanediol production process with E. coli operating on the premise of using cost-effective medium without complex supplements, considering second generation feedstocks. Different gene donors and promoter fine-tuning allowed for construction of a potent E. coli strain for the production of 2,3-butanediol as important drop-in chemical. Pulsed fed-batch cultivations of E. coli W using microaerobic conditions showed high diol productivity of 4.5 g l h. Optimizing oxygen supply and elimination of acetoin and by-product formation improved the 2,3-butanediol titer to 68 g l, 76% of the theoretical maximum yield, however, at the expense of productivity. Sugar beet molasses was tested as a potential substrate for industrial production of chemicals. Pulsed fed-batch cultivations produced 56 g l 2,3-butanediol, underlining the great potential of E. coli W as production organism for high value-added chemicals.
A potent 2,3-butanediol producing E. coli strain was generated by considering promoter fine-tuning to balance cell fitness and production capacity. For the first time, 2,3-butanediol production was achieved with promising titer, rate and yield and no acetoin formation from glucose in pulsed fed-batch cultivations using chemically defined medium without complex hydrolysates. Furthermore, versatility of E. coli W as production host was demonstrated by efficiently converting sucrose from sugar beet molasses into 2,3-butanediol.
化学物质的高效微生物生产往往受到产物的细胞毒性或宿主菌株的致病性的阻碍。因此,2,3-丁二醇作为一种重要的替代化学物质,是微生物合成的一个有趣的目标分子,因为它没有细胞毒性。对非致病性和工业相关的微生物(如大肠杆菌)进行代谢工程,已经产生了有希望的 2,3-丁二醇产量,显示了微生物合成 2,3-丁二醇的潜力。然而,目前的微生物 2,3-丁二醇生产过程通常依赖于酵母提取物作为昂贵的添加剂,使得这些过程在工业生产中不可行。
本研究的目的是开发一种高效的 2,3-丁二醇生产工艺,使用具有成本效益的培养基,不使用复杂的补充剂,考虑第二代饲料,使用大肠杆菌操作。不同的基因供体和启动子微调允许构建一种有效的大肠杆菌菌株,用于生产 2,3-丁二醇作为重要的替代化学物质。使用微需氧条件对大肠杆菌 W 进行脉冲分批培养显示出 4.5 g l h 的高二醇生产力。优化供氧和消除乙酰丁醇和副产物的形成将 2,3-丁二醇的产量提高到 68 g l,达到理论最大产量的 76%,但牺牲了生产力。糖甜菜蜜饯被测试为工业生产化学品的潜在底物。脉冲分批培养产生了 56 g l 2,3-丁二醇,强调了大肠杆菌 W 作为生产高附加值化学品的生产生物的巨大潜力。
通过考虑启动子的微调来平衡细胞适应性和生产能力,生成了一种有效的 2,3-丁二醇生产大肠杆菌菌株。首次在不使用复杂水解物的化学定义培养基中,通过脉冲分批培养,从葡萄糖中以有希望的产量、速率和产率实现了 2,3-丁二醇的生产,且无乙酰丁醇的形成。此外,通过有效地将糖甜菜蜜饯中的蔗糖转化为 2,3-丁二醇,证明了大肠杆菌 W 作为生产宿主的多功能性。