Suppr超能文献

利用血清蛋白质组分析诊断胰腺癌。

Diagnosis of pancreatic cancer using serum proteomic profiling.

作者信息

Bhattacharyya Sudeepa, Siegel Eric R, Petersen Gloria M, Chari Suresh T, Suva Larry J, Haun Randy S

机构信息

Center for Orthopaedic Research, Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

出版信息

Neoplasia. 2004 Sep-Oct;6(5):674-86. doi: 10.1593/neo.04262.

Abstract

In the United States, mortality rates from pancreatic cancer (PCa) have not changed significantly over the past 50 years. This is due, in part, to the lack of early detection methods for this particularly aggressive form of cancer. The objective of this study was to use high-throughput protein profiling technology to identify biomarkers in the serum proteome for the early detection of resectable PCa. Using surface-enhanced laser desorption/ionization mass spectrometry, protein profiles were generated from sera of 49 PCa patients and 54 unaffected individuals after fractionation on an anion exchange resin. The samples were randomly divided into a training set (69 samples) and test set (34 samples), and two multivariate analysis procedures, classification and regression tree and logistic regression, were used to develop classification models from these spectral data that could distinguish PCa from control serum samples. In the test set, both models correctly classified all of the PCa patient serum samples (100% sensitivity). Using the decision tree algorithm, a specificity of 93.5% was obtained, whereas the logistic regression model produced a specificity of 100%. These results suggest that high-throughput proteomics profiling has the capacity to provide new biomarkers for the early detection and diagnosis of PCa.

摘要

在美国,过去50年里胰腺癌(PCa)的死亡率并未显著变化。部分原因在于缺乏针对这种侵袭性特别强的癌症的早期检测方法。本研究的目的是利用高通量蛋白质谱分析技术,在血清蛋白质组中鉴定出可用于早期检测可切除性PCa的生物标志物。使用表面增强激光解吸/电离质谱法,在阴离子交换树脂上进行分级分离后,从49例PCa患者和54例未受影响个体的血清中生成蛋白质谱。将样本随机分为训练集(69个样本)和测试集(34个样本),并使用两种多变量分析程序,即分类与回归树和逻辑回归,从这些光谱数据中开发能够区分PCa与对照血清样本的分类模型。在测试集中,两种模型均正确分类了所有PCa患者血清样本(敏感性为100%)。使用决策树算法,特异性为93.5%,而逻辑回归模型的特异性为100%。这些结果表明,高通量蛋白质组学分析有能力为PCa的早期检测和诊断提供新的生物标志物。

相似文献

7
Highly sensitive detection of melanoma based on serum proteomic profiling.基于血清蛋白质组分析的黑色素瘤高灵敏度检测
J Cancer Res Clin Oncol. 2009 Sep;135(9):1257-64. doi: 10.1007/s00432-009-0567-7. Epub 2009 Mar 14.

引用本文的文献

5
Strategies for early detection of resectable pancreatic cancer.可切除胰腺癌的早期检测策略。
World J Gastroenterol. 2014 Aug 28;20(32):11230-40. doi: 10.3748/wjg.v20.i32.11230.
8
Tumour markers: An overview.肿瘤标志物:概述
Indian J Clin Biochem. 2007 Sep;22(2):17-31. doi: 10.1007/BF02913308.
10
Proteome-based biomarkers in pancreatic cancer.基于蛋白质组学的胰腺癌生物标志物。
World J Gastroenterol. 2011 Nov 28;17(44):4845-52. doi: 10.3748/wjg.v17.i44.4845.

本文引用的文献

5
Proteomic approaches to tumor marker discovery.用于发现肿瘤标志物的蛋白质组学方法。
Arch Pathol Lab Med. 2002 Dec;126(12):1518-26. doi: 10.5858/2002-126-1518-PATTMD.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验