Suppr超能文献

用于预测药物ADME性质的计算机模拟方法。

In silico approaches for predicting ADME properties of drugs.

作者信息

Yamashita Fumiyoshi, Hashida Mitsuru

机构信息

Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.

出版信息

Drug Metab Pharmacokinet. 2004 Oct;19(5):327-38. doi: 10.2133/dmpk.19.327.

Abstract

Combinatorial chemistry and high-throughput screening have increased the possibility of finding new lead compounds at much shorter time periods than conventional medicinal chemistry. However, too much promising drug candidates often fail because of unsatisfactory ADME properties. In silico ADME studies are expected to reduce the risk of late-stage attrition of drug development and to optimize screening and testing by looking at only the promising compounds. To this end, many in silico approaches for predicting ADME properties of compounds from their chemical structure have been developed, ranging from data-based approaches such as quantitative structure-activity relationship (QSAR), similarity searches, and 3-dimensional QSAR, to structure-based methods such as ligand-protein docking and pharmacophore modelling. In addition, several methods of integrating ADME properties to predict pharmacokinetics at the organ or body level have been studied. In this article, we briefly summarize in silico ADME approaches.

摘要

组合化学和高通量筛选增加了在比传统药物化学短得多的时间内找到新先导化合物的可能性。然而,由于药物的吸收、分布、代谢和排泄(ADME)性质不理想,太多有前景的候选药物往往会失败。计算机辅助ADME研究有望降低药物开发后期淘汰的风险,并通过仅关注有前景的化合物来优化筛选和测试。为此,已经开发了许多从化合物化学结构预测其ADME性质的计算机辅助方法,从基于数据的方法如定量构效关系(QSAR)、相似性搜索和三维QSAR,到基于结构的方法如配体-蛋白质对接和药效团建模。此外,还研究了几种整合ADME性质以预测器官或身体水平药代动力学的方法。在本文中,我们简要总结计算机辅助ADME方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验