Suppr超能文献

使用稀疏真实数据进行分割评估:将真实分割模拟为与人类生成的分割一样完美/不完美。

Segmentation evaluation with sparse ground truth data: Simulating true segmentations as perfect/imperfect as those generated by humans.

作者信息

Li Jieyu, Udupa Jayaram K, Tong Yubing, Wang Lisheng, Torigian Drew A

机构信息

Institute of Image Processing and Pattern Recognition, Department of Automation, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, China; Medical Image Processing Group, Department of Radiology, University of Pennsylvania, 602 Goddard building, 3710 Hamilton Walk, Philadelphia, PA, 19104, United States.

Medical Image Processing Group, Department of Radiology, University of Pennsylvania, 602 Goddard building, 3710 Hamilton Walk, Philadelphia, PA, 19104, United States.

出版信息

Med Image Anal. 2021 Apr;69:101980. doi: 10.1016/j.media.2021.101980. Epub 2021 Jan 26.

Abstract

Fully annotated data sets play important roles in medical image segmentation and evaluation. Expense and imprecision are the two main issues in generating ground truth (GT) segmentations. In this paper, in an attempt to overcome these two issues jointly, we propose a method, named SparseGT, which exploit variability among human segmenters to maximally save manual workload in GT generation for evaluating actual segmentations by algorithms. Pseudo ground truth (p-GT) segmentations are created by only a small fraction of workload and with human-level perfection/imperfection, and they can be used in practice as a substitute for fully manual GT in evaluating segmentation algorithms at the same precision. p-GT segmentations are generated by first selecting slices sparsely, where manual contouring is conducted only on these sparse slices, and subsequently filling segmentations on other slices automatically. By creating p-GT with different levels of sparseness, we determine the largest workload reduction achievable for each considered object, where the variability of the generated p-GT is statistically indistinguishable from inter-segmenter differences in full manual GT segmentations for that object. Furthermore, we investigate the segmentation evaluation errors introduced by variability in manual GT by applying p-GT in evaluation of actual segmentations by an algorithm. Experiments are conducted on ∼500 computed tomography (CT) studies involving six objects in two body regions, Head & Neck and Thorax, where optimal sparseness and corresponding evaluation errors are determined for each object and each strategy. Our results indicate that creating p-GT by the concatenated strategy of uniformly selecting sparse slices and filling segmentations via deep-learning (DL) network show highest manual workload reduction by ∼80-96% without sacrificing evaluation accuracy compared to fully manual GT. Nevertheless, other strategies also have obvious contributions in different situations. A non-uniform strategy for slice selection shows its advantage for objects with irregular shape change from slice to slice. An interpolation strategy for filling segmentations can achieve ∼60-90% of workload reduction in simulating human-level GT without the need of an actual training stage and shows potential in enlarging data sets for training p-GT generation networks. We conclude that not only over 90% reduction in workload is feasible without sacrificing evaluation accuracy but also the suitable strategy and the optimal sparseness level achievable for creating p-GT are object- and application-specific.

摘要

带完整注释的数据集在医学图像分割和评估中发挥着重要作用。成本和不精确性是生成真实(GT)分割的两个主要问题。在本文中,为了共同克服这两个问题,我们提出了一种名为SparseGT的方法,该方法利用人类分割者之间的差异,在生成用于评估算法实际分割的GT时最大限度地减少人工工作量。伪真实(p-GT)分割仅通过一小部分工作量创建,具有人类水平的完美/不完美,并且在以相同精度评估分割算法时,它们可以在实践中用作完全手动GT的替代品。p-GT分割的生成首先是稀疏地选择切片,仅在这些稀疏切片上进行手动轮廓绘制,然后自动填充其他切片上的分割。通过创建具有不同稀疏程度的p-GT,我们确定了每个考虑对象可实现的最大工作量减少,其中生成的p-GT的变异性在统计上与该对象完全手动GT分割中的分割者间差异无法区分。此外,我们通过将p-GT应用于算法对实际分割的评估,研究了手动GT变异性引入的分割评估误差。在涉及头部和颈部以及胸部两个身体区域中的六个对象的约500个计算机断层扫描(CT)研究上进行了实验,为每个对象和每种策略确定了最佳稀疏度和相应的评估误差。我们的结果表明,与完全手动GT相比,通过均匀选择稀疏切片和通过深度学习(DL)网络填充分割的串联策略创建p-GT可显示出最高约80 - 96%的人工工作量减少,而不会牺牲评估准确性。然而,其他策略在不同情况下也有明显贡献。切片选择的非均匀策略对于切片间形状变化不规则的对象显示出其优势。用于填充分割的插值策略在模拟人类水平的GT时可以实现约60 - 90%的工作量减少,而无需实际训练阶段,并且在扩大用于训练p-GT生成网络的数据集方面显示出潜力。我们得出结论,不仅在不牺牲评估准确性的情况下减少超过90%的工作量是可行的,而且创建p-GT的合适策略和可实现的最佳稀疏度水平是特定于对象和应用的。

相似文献

2
LinSEM: Linearizing segmentation evaluation metrics for medical images.
Med Image Anal. 2020 Feb;60:101601. doi: 10.1016/j.media.2019.101601. Epub 2019 Nov 9.
4
Object recognition in medical images via anatomy-guided deep learning.
Med Image Anal. 2022 Oct;81:102527. doi: 10.1016/j.media.2022.102527. Epub 2022 Jun 25.
6
Evaluation of uterine cervix segmentations using ground truth from multiple experts.
Comput Med Imaging Graph. 2009 Apr;33(3):205-16. doi: 10.1016/j.compmedimag.2008.12.002. Epub 2009 Feb 13.
7
9
Automated quantification and evaluation of motion artifact on coronary CT angiography images.
Med Phys. 2018 Dec;45(12):5494-5508. doi: 10.1002/mp.13243. Epub 2018 Nov 13.
10

引用本文的文献

1
Artificial Intelligence Approaches for Geographic Atrophy Segmentation: A Systematic Review and Meta-Analysis.
Bioengineering (Basel). 2025 Apr 30;12(5):475. doi: 10.3390/bioengineering12050475.
2
Sparse Annotation is Sufficient for Bootstrapping Dense Segmentation.
Res Sq. 2024 Nov 14:rs.3.rs-5339143. doi: 10.21203/rs.3.rs-5339143/v1.
3
Sparse Annotation is Sufficient for Bootstrapping Dense Segmentation.
bioRxiv. 2024 Oct 26:2024.06.14.599135. doi: 10.1101/2024.06.14.599135.
4
ID-Seg: an infant deep learning-based segmentation framework to improve limbic structure estimates.
Brain Inform. 2022 May 28;9(1):12. doi: 10.1186/s40708-022-00161-9.

本文引用的文献

1
Mixed-Supervised Dual-Network for Medical Image Segmentation.
Med Image Comput Comput Assist Interv. 2019 Oct;11765:192-200. doi: 10.1007/978-3-030-32245-8_22. Epub 2019 Oct 10.
2
Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation.
Med Image Anal. 2020 Jul;63:101693. doi: 10.1016/j.media.2020.101693. Epub 2020 Apr 3.
3
LinSEM: Linearizing segmentation evaluation metrics for medical images.
Med Image Anal. 2020 Feb;60:101601. doi: 10.1016/j.media.2019.101601. Epub 2019 Nov 9.
4
Annotated normal CT data of the abdomen for deep learning: Challenges and strategies for implementation.
Diagn Interv Imaging. 2020 Jan;101(1):35-44. doi: 10.1016/j.diii.2019.05.008. Epub 2019 Jul 26.
5
Computational anatomy for multi-organ analysis in medical imaging: A review.
Med Image Anal. 2019 Aug;56:44-67. doi: 10.1016/j.media.2019.04.002. Epub 2019 May 15.
7
A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning.
Med Image Anal. 2019 May;54:220-237. doi: 10.1016/j.media.2019.03.005. Epub 2019 Mar 22.
8
CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation.
Med Image Anal. 2019 May;54:168-178. doi: 10.1016/j.media.2019.03.003. Epub 2019 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验