Suppr超能文献

分子肿瘤学——肺癌研究展望

Molecular oncology--perspectives in lung cancer.

作者信息

Huber R M, Stratakis D F

机构信息

Medizinische Klinik Innenstadt, Pneumology, Ludwig-Maximilians-University, Ziemssenstrasse 1, D-80336 Munich, Germany.

出版信息

Lung Cancer. 2004 Aug;45 Suppl 2:S209-13. doi: 10.1016/j.lungcan.2004.07.973.

Abstract

Despite novel therapies in lung cancer treatment the 5-year survival rate still remains poor. Furthermore, screening concepts for early diagnosis, based on conventional sputum cytology and chest radiography, have so far not demonstrated an impact on decreasing lung-cancer mortality. More specific molecular markers allow new insights in the process of lung carcinogenesis. Furthermore they raise the hope that they provide new tools for early diagnosis and screening of high-risk individuals, determination of prognosis, and identification of innovative treatments. In this review, these perspectives of molecular targets in lung cancer will be discussed and summarised. Angiogenesis-stimulating factors (VEGF, FGF, MMP, etc.), parameters concerning tumour cell proliferation and apoptosis (EGFR, p53, K-ras, rb, bcl-2, etc.) are well known. Several of these genetic factors have already been investigated, but no single parameter has yet gained a sufficient selectivity regarding prognostic significance or therapeutic efficacy. New aspects in the complex tumour-stroma interaction and the interactive, cross-talking signal transduction pathways and recently developed functional genomic approaches, such as DNA microarrays and proteomics might lead to further progress in biological staging models and treatment concepts.

摘要

尽管肺癌治疗有了新疗法,但5年生存率仍然很低。此外,基于传统痰细胞学和胸部X线摄影的早期诊断筛查概念,目前尚未显示出对降低肺癌死亡率有影响。更具特异性的分子标志物为肺癌发生过程提供了新的见解。此外,它们带来了希望,即能为高危个体的早期诊断和筛查、预后判定以及创新治疗方法的识别提供新工具。在这篇综述中,将对肺癌分子靶点的这些前景进行讨论和总结。血管生成刺激因子(VEGF、FGF、MMP等)、与肿瘤细胞增殖和凋亡相关的参数(EGFR、p53、K-ras、rb、bcl-2等)是众所周知的。其中一些遗传因素已经得到研究,但就预后意义或治疗效果而言,尚无单一参数具有足够的选择性。复杂的肿瘤-基质相互作用以及相互作用、相互交联的信号转导途径中的新方面,以及最近开发的功能基因组学方法,如DNA微阵列和蛋白质组学,可能会在生物学分期模型和治疗概念方面带来进一步进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验