Akoh Casimir C, Lee Guan-Chiun, Shaw Jei-Fu
Department of Food Science and Technology, University of Georgia, Athens, Georgia 30602-7610, USA.
Lipids. 2004 Jun;39(6):513-26. doi: 10.1007/s11745-004-1258-7.
Commercial preparations of Candida rugosa lipase (CRL) are mixtures of lipase isoforms used for the hydrolysis and synthesis of various esters. The presence of variable isoforms and the amount of lipolytic protein in the crude lipase preparations lead to a lack of reproducibility of biocatalytic reactions. Purification of crude CRL improve their substrate specificity, enantioselectivity, stability, and specific activities. The expression of the isoforms is governed by culture or fermentation conditions. Unfortunately, the nonsporogenic yeast C. rugosa does not utilize the universal codon CTG for leucine; therefore, most of the CTG codons were converted to universal serine triplets by site-directed mutagenesis to gain expression of functional lipase in heterologous hosts. Recombinant expressions by multiple-site mutagenesis or complete synthesis of the lipase gene are other possible ways of obtaining pure and different CRL isoforms, in addition to culture engineering. Protein engineering of purified CRL isoforms allows the tailoring of enzyme function. This involves computer modeling based on available 3-D structures of lipase isoforms. Lid swapping and DNA shuffling techniques can be used to improve the enantioselectivity, thermostability, and substrate specificity of CRL isoforms and increase their biotechnological applications. Lid swapping can result in chimera proteins with new functions. The sequence of the lid can affect the activity and specificity of recombinant CRL isoforms. Candida rugosa lipase is toxicologically safe for food applications. Protein engineering through lid swapping and rationally designed site-directed mutagenesis will continue to lead to the production of CRL isoforms with improved catalytic power, thermostability, enantioselectivity, and substrate specificity, while providing evidence for the mechanisms of actions of the various isoforms.
皱褶假丝酵母脂肪酶(CRL)的商业制剂是用于各种酯水解和合成的脂肪酶同工型混合物。粗脂肪酶制剂中存在可变的同工型和脂解蛋白的量导致生物催化反应缺乏可重复性。粗CRL的纯化提高了它们的底物特异性、对映选择性、稳定性和比活性。同工型的表达受培养或发酵条件的控制。不幸的是,非产孢酵母皱褶假丝酵母不利用通用密码子CTG编码亮氨酸;因此,大多数CTG密码子通过定点诱变被转化为通用的丝氨酸三联体,以便在异源宿主中获得功能性脂肪酶的表达。除了培养工程外,通过多位点诱变或脂肪酶基因的完全合成进行重组表达是获得纯的和不同的CRL同工型的其他可能方法。纯化的CRL同工型的蛋白质工程允许对酶功能进行定制。这涉及基于脂肪酶同工型可用三维结构的计算机建模。盖子交换和DNA改组技术可用于提高CRL同工型的对映选择性、热稳定性和底物特异性,并增加它们的生物技术应用。盖子交换可产生具有新功能的嵌合蛋白。盖子的序列可影响重组CRL同工型的活性和特异性。皱褶假丝酵母脂肪酶在食品应用中在毒理学上是安全的。通过盖子交换和合理设计的定点诱变进行蛋白质工程将继续导致产生具有改进的催化能力、热稳定性、对映选择性和底物特异性的CRL同工型,同时为各种同工型的作用机制提供证据。