Borkowf Craig B
Centers for Disease Control and Prevention, National Center for Infectious Diseases, Division of Viral and Rickettsial Diseases, Influenza Branch, Epidemiology Section, Mail Stop A32, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
Stat Med. 2005 Mar 30;24(6):827-51. doi: 10.1002/sim.1960.
In this paper, we propose a hybrid variance estimator for the Kaplan-Meier survival function. This new estimator approximates the true variance by a Binomial variance formula, where the proportion parameter is a piecewise non-increasing function of the Kaplan-Meier survival function and its upper bound, as described below. Also, the effective sample size equals the number of subjects not censored prior to that time. In addition, we consider an adjusted hybrid variance estimator that modifies the regular estimator for small sample sizes. We present a simulation study to compare the performance of the regular and adjusted hybrid variance estimators to the Greenwood and Peto variance estimators for small sample sizes. We show that on average these hybrid variance estimators give closer variance estimates to the true values than the traditional variance estimators, and hence confidence intervals constructed with these hybrid variance estimators have more nominal coverage rates. Indeed, the Greenwood and Peto variance estimators can substantially underestimate the true variance in the left and right tails of the survival distribution, even with moderately censored data. Finally, we illustrate the use of these hybrid and traditional variance estimators on a data set from a leukaemia clinical trial.
在本文中,我们提出了一种用于Kaplan-Meier生存函数的混合方差估计量。这种新的估计量通过二项式方差公式来近似真实方差,其中比例参数是Kaplan-Meier生存函数及其上限的分段非增函数,如下所述。此外,有效样本量等于在该时间之前未被删失的受试者数量。另外,我们考虑一种调整后的混合方差估计量,它针对小样本量对常规估计量进行了修正。我们进行了一项模拟研究,以比较小样本量下常规和调整后的混合方差估计量与Greenwood和Peto方差估计量的性能。我们表明,平均而言,这些混合方差估计量比传统方差估计量给出的方差估计值更接近真实值,因此用这些混合方差估计量构建的置信区间具有更高的名义覆盖率。实际上,即使对于适度删失的数据,Greenwood和Peto方差估计量也可能在生存分布的左尾和右尾严重低估真实方差。最后,我们在一个白血病临床试验的数据集上说明了这些混合和传统方差估计量的使用。