Suppr超能文献

具有右删失数据的生存分布的有限样本逐点置信区间。

Finite sample pointwise confidence intervals for a survival distribution with right-censored data.

作者信息

Fay Michael P, Brittain Erica H

机构信息

National Institute of Allergy and Infectious Diseases, 5601 Fishers Lane, MSC 9820, Bethesda, MD 20892, U.S.A.

出版信息

Stat Med. 2016 Jul 20;35(16):2726-40. doi: 10.1002/sim.6905. Epub 2016 Feb 18.

Abstract

We review and develop pointwise confidence intervals for a survival distribution with right-censored data for small samples, assuming only independence of censoring and survival. When there is no censoring, at each fixed time point, the problem reduces to making inferences about a binomial parameter. In this case, the recently developed beta product confidence procedure (BPCP) gives the standard exact central binomial confidence intervals of Clopper and Pearson. Additionally, the BPCP has been shown to be exact (gives guaranteed coverage at the nominal level) for progressive type II censoring and has been shown by simulation to be exact for general independent right censoring. In this paper, we modify the BPCP to create a 'mid-p' version, which reduces to the mid-p confidence interval for a binomial parameter when there is no censoring. We perform extensive simulations on both the standard and mid-p BPCP using a method of moments implementation that enforces monotonicity over time. All simulated scenarios suggest that the standard BPCP is exact. The mid-p BPCP, like other mid-p confidence intervals, has simulated coverage closer to the nominal level but may not be exact for all survival times, especially in very low censoring scenarios. In contrast, the two asymptotically-based approximations have lower than nominal coverage in many scenarios. This poor coverage is due to the extreme inflation of the lower error rates, although the upper limits are very conservative. Both the standard and the mid-p BPCP methods are available in our bpcp R package. Published 2016. This article is US Government work and is in the public domain in the USA.

摘要

我们针对小样本右删失数据的生存分布回顾并开发了逐点置信区间,仅假设删失与生存相互独立。当不存在删失时,在每个固定时间点,问题简化为对二项式参数进行推断。在这种情况下,最近开发的贝塔乘积置信程序(BPCP)给出了克洛普和皮尔逊的标准精确中心二项式置信区间。此外,BPCP已被证明对于渐进II型删失是精确的(在名义水平上保证覆盖),并且通过模拟表明对于一般独立右删失也是精确的。在本文中,我们对BPCP进行修改以创建一个“中p”版本,当不存在删失时,它简化为二项式参数的中p置信区间。我们使用一种强制随时间单调性的矩估计方法对标准和中p BPCP进行了广泛的模拟。所有模拟场景都表明标准BPCP是精确的。中p BPCP与其他中p置信区间一样,模拟覆盖更接近名义水平,但对于所有生存时间可能并不精确,特别是在极低删失场景中。相比之下,两种基于渐近的近似在许多场景中的覆盖低于名义水平。这种较差的覆盖是由于较低错误率的极端膨胀,尽管上限非常保守。标准和中p BPCP方法都可在我们的bpcp R包中获取。2016年发表。本文为美国政府作品,在美国属于公共领域。

相似文献

引用本文的文献

7
Statistical description for survival data.生存数据的统计描述。
Ann Transl Med. 2016 Oct;4(20):401. doi: 10.21037/atm.2016.07.17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验