Suppr超能文献

酿酒酵母的鞘脂长链碱基营养缺陷型:遗传学、生理学及其筛选方法。

Sphingolipid long-chain-base auxotrophs of Saccharomyces cerevisiae: genetics, physiology, and a method for their selection.

作者信息

Pinto W J, Srinivasan B, Shepherd S, Schmidt A, Dickson R C, Lester R L

机构信息

Department of Biochemistry, University of Kentucky College of Medicine, Lexington 40536.

出版信息

J Bacteriol. 1992 Apr;174(8):2565-74. doi: 10.1128/jb.174.8.2565-2574.1992.

Abstract

A selection method for sphingolipid long-chain-base auxotrophs of Saccharomyces cerevisiae was devised after observing that strains that require a long-chain base for growth become denser when starved for this substance. Genetic analysis of over 60 such strains indicated only two complementation classes, lcb1 and lcb2. Mutant strains from each class grew equally well with 3-ketodihydrosphingosine, erythrodihydrosphingosine or threodihydrosphingosine, or phytosphingosine. Since these metabolites represent the first, second, and last components, respectively, of the long-chain-base biosynthetic pathway, it is likely that the LCB1 and LCB2 genes are involved in the first step of long-chain-base synthesis. The results of long-chain-base starvation in the Lcb- strains suggest that one or more sphingolipids have a vital role in S. cerevisiae. Immediate sequelae of long-chain-base starvation were loss of viability, exacerbated in the presence of alpha-cyclodextrin, and loss of phosphoinositol sphingolipid synthesis but not phosphatidylinositol synthesis. Loss of viability with long-chain-base starvation could be prevented by also blocking either protein or nucleic acid synthesis. Without a long-chain-base, cell division, dry mass accumulation, and protein synthesis continued at a diminished rate and were further inhibited by the detergent Tergitol. The cell density increase induced by long-chain-base starvation is thus explained as a differential loss of cell division and mass accumulation. Long-chain-base starvation in Lcb- S. cerevisiae and inositol starvation of Inos- S. cerevisiae share common features: an increase in cell density and a loss of cell viability overcome by blocking macromolecular synthesis.

摘要

在观察到需要长链碱基才能生长的酿酒酵母菌株在缺乏该物质时会变得更致密后,设计了一种筛选酿酒酵母鞘脂长链碱基营养缺陷型的方法。对60多个此类菌株的遗传分析仅表明有两个互补类,即lcb1和lcb2。来自每个类别的突变菌株在3-酮二氢鞘氨醇、赤藓二氢鞘氨醇或苏阿糖二氢鞘氨醇或植物鞘氨醇存在下生长得同样好。由于这些代谢物分别代表长链碱基生物合成途径的第一个、第二个和最后一个成分,因此LCB1和LCB2基因可能参与长链碱基合成的第一步。Lcb-菌株中长链碱基饥饿的结果表明,一种或多种鞘脂在酿酒酵母中具有至关重要的作用。长链碱基饥饿的直接后果是活力丧失,在α-环糊精存在下会加剧,以及磷酸肌醇鞘脂合成丧失但磷脂酰肌醇合成未丧失。通过阻断蛋白质或核酸合成可以防止长链碱基饥饿导致的活力丧失。在没有长链碱基的情况下,细胞分裂、干质量积累和蛋白质合成以降低的速率继续进行,并被去污剂Tergitol进一步抑制。因此,长链碱基饥饿诱导的细胞密度增加被解释为细胞分裂和质量积累的差异丧失。Lcb-酿酒酵母中的长链碱基饥饿和Inos-酿酒酵母中的肌醇饥饿具有共同特征:细胞密度增加和通过阻断大分子合成克服的细胞活力丧失。

相似文献

8
The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases.
J Biol Chem. 1998 Jul 31;273(31):19437-42. doi: 10.1074/jbc.273.31.19437.
9
Metabolism and selected functions of sphingolipids in the yeast Saccharomyces cerevisiae.
Biochim Biophys Acta. 1999 Jun 10;1438(3):305-21. doi: 10.1016/s1388-1981(99)00068-2.
10
Accumulation of long-chain bases in yeast promotes their conversion to a long-chain base vinyl ether.
J Lipid Res. 2016 Nov;57(11):2040-2050. doi: 10.1194/jlr.M070748. Epub 2016 Aug 25.

引用本文的文献

1
Auxotrophy-based curation improves the consensus genome-scale metabolic model of yeast.
Synth Syst Biotechnol. 2024 Jul 30;9(4):861-870. doi: 10.1016/j.synbio.2024.07.006. eCollection 2024 Dec.
3
The fatty acid 2-hydroxylase CsSCS7 is a key hyphal growth factor and potential control target in .
mBio. 2024 Feb 14;15(2):e0201523. doi: 10.1128/mbio.02015-23. Epub 2024 Jan 10.
5
Enhancing lifespan of budding yeast by pharmacological lowering of amino acid pools.
Aging (Albany NY). 2021 Mar 21;13(6):7846-7871. doi: 10.18632/aging.202849.
6
SSSPTA is essential for serine palmitoyltransferase function during development and hematopoiesis.
J Biol Chem. 2021 Jan-Jun;296:100491. doi: 10.1016/j.jbc.2021.100491. Epub 2021 Mar 1.
7
Sphingolipid biosynthesis in man and microbes.
Nat Prod Rep. 2018 Sep 19;35(9):921-954. doi: 10.1039/c8np00019k.
8
Saccharomyces cerevisiae as a platform for assessing sphingolipid lipid kinase inhibitors.
PLoS One. 2018 Apr 19;13(4):e0192179. doi: 10.1371/journal.pone.0192179. eCollection 2018.
9
Ceramide signals for initiation of yeast mating-specific cell cycle arrest.
Cell Cycle. 2016;15(3):441-54. doi: 10.1080/15384101.2015.1127475. Epub 2016 Jan 4.
10
Regulation of Sphingolipid Biosynthesis by the Morphogenesis Checkpoint Kinase Swe1.
J Biol Chem. 2016 Jan 29;291(5):2524-34. doi: 10.1074/jbc.M115.693200. Epub 2015 Dec 3.

本文引用的文献

5
A computer algorithm for the analysis of protein distribution in budding yeast.
Cytometry. 1984 Jan;5(1):81-5. doi: 10.1002/cyto.990050112.
7
Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon.
Proc Natl Acad Sci U S A. 1982 Nov;79(22):6971-5. doi: 10.1073/pnas.79.22.6971.
9
Studies on the biosynthesis and degradation of sphingosine bases.
Chem Phys Lipids. 1970 Oct;5(1):139-58. doi: 10.1016/0009-3084(70)90014-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验