Suppr超能文献

在无造影剂的转基因小鼠中通过磁共振成像对阿尔茨海默病淀粉样斑块进行体内可视化。

In vivo visualization of Alzheimer's amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent.

作者信息

Jack Clifford R, Garwood Michael, Wengenack Thomas M, Borowski Bret, Curran Geoffrey L, Lin Joseph, Adriany Gregor, Gröhn Olli H J, Grimm Roger, Poduslo Joseph F

机构信息

Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.

出版信息

Magn Reson Med. 2004 Dec;52(6):1263-71. doi: 10.1002/mrm.20266.

Abstract

One of the cardinal pathologic features of Alzheimer's disease (AD) is the formation of senile, or amyloid, plaques. Transgenic mice have been developed that express one or more of the genes responsible for familial AD in humans. Doubly transgenic mice develop "human-like" plaques, providing a mechanism to study amyloid plaque biology in a controlled manner. Imaging of labeled plaques has been accomplished with other modalities, but only MRI has sufficient spatial and contrast resolution to visualize individual plaques noninvasively. Methods to optimize visualization of plaques in vivo in transgenic mice at 9.4 T using a spin echo sequence based on adiabatic pulses are described. Preliminary results indicate that a spin echo acquisition more accurately reflects plaque size, while a T2* weighted gradient echo sequence reflects plaque iron content, not plaque size. In vivo MRI-ex vivo MRI-in vitro histologic correlations are provided. Histologically verified plaques as small as 50 microm in diameter were visualized in living animals. To our knowledge this work represents the first demonstration of noninvasive in vivo visualization of individual AD plaques without the use of a contrast agent.

摘要

阿尔茨海默病(AD)的主要病理特征之一是老年斑或淀粉样斑块的形成。已经培育出了表达人类家族性AD相关一种或多种基因的转基因小鼠。双转基因小鼠会形成“类人”斑块,为以可控方式研究淀粉样斑块生物学提供了一种机制。用其他方式已实现对标记斑块的成像,但只有磁共振成像(MRI)具有足够的空间和对比度分辨率,能够以非侵入性方式可视化单个斑块。本文描述了在9.4 T磁场下,使用基于绝热脉冲的自旋回波序列,在转基因小鼠体内优化斑块可视化的方法。初步结果表明,自旋回波采集能更准确地反映斑块大小,而T2*加权梯度回波序列反映的是斑块铁含量,而非斑块大小。提供了体内MRI - 体外MRI - 体外组织学之间的相关性。在活体动物中可视化了经组织学验证直径小至50微米的斑块。据我们所知,这项工作首次证明了在不使用造影剂的情况下对单个AD斑块进行非侵入性体内可视化。

相似文献

3
In vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer's transgenic mice.
J Neurosci. 2005 Oct 26;25(43):10041-8. doi: 10.1523/JNEUROSCI.2588-05.2005.
4
Regional differences in MRI detection of amyloid plaques in AD transgenic mouse brain.
Neuroimage. 2011 Jan 1;54(1):113-22. doi: 10.1016/j.neuroimage.2010.08.033. Epub 2010 Aug 20.
5
6
Detection of amyloid plaques targeted by USPIO-Aβ1-42 in Alzheimer's disease transgenic mice using magnetic resonance microimaging.
Neuroimage. 2011 Apr 15;55(4):1600-9. doi: 10.1016/j.neuroimage.2011.01.023. Epub 2011 Jan 19.
7
Imaging beta amyloid aggregation and iron accumulation in Alzheimer's disease using quantitative susceptibility mapping MRI.
Neuroimage. 2019 May 1;191:176-185. doi: 10.1016/j.neuroimage.2019.02.019. Epub 2019 Feb 7.
9
Magnetization transfer contrast imaging reveals amyloid pathology in Alzheimer's disease transgenic mice.
Neuroimage. 2014 Feb 15;87:111-9. doi: 10.1016/j.neuroimage.2013.10.056. Epub 2013 Nov 2.

引用本文的文献

1
Diamagnetic Signature of Beta-Amyloid (Aβ) and Tau (τ) Tangle Pathology in Alzheimer's Disease: A Review.
Aging Med (Milton). 2025 Feb 9;8(1):e70006. doi: 10.1002/agm2.70006. eCollection 2025 Feb.
2
Iron accumulation/overload and Alzheimer's disease risk factors in the precuneus region: A comprehensive narrative review.
Aging Med (Milton). 2024 Oct 22;7(5):649-667. doi: 10.1002/agm2.12363. eCollection 2024 Oct.
3
Distinct regional vulnerability to Aβ and iron accumulation in post mortem AD brains.
Alzheimers Dement. 2024 Oct;20(10):6984-6997. doi: 10.1002/alz.14188. Epub 2024 Aug 23.
4
A Promising Approach: Magnetic Nanosystems for Alzheimer's Disease Theranostics.
Pharmaceutics. 2023 Sep 13;15(9):2316. doi: 10.3390/pharmaceutics15092316.
5
Multimodal comparisons of QSM and PET in neurodegeneration and aging.
Neuroimage. 2023 Jun;273:120068. doi: 10.1016/j.neuroimage.2023.120068. Epub 2023 Mar 31.
6
Quantitative susceptibility mapping as an imaging biomarker for Alzheimer's disease: The expectations and limitations.
Front Neurosci. 2022 Aug 5;16:938092. doi: 10.3389/fnins.2022.938092. eCollection 2022.
8
Insertable inductively coupled volumetric coils for MR microscopy in a human 7T MR system.
Magn Reson Med. 2022 Mar;87(3):1613-1620. doi: 10.1002/mrm.29062. Epub 2021 Nov 1.
10
Associations of quantitative susceptibility mapping with Alzheimer's disease clinical and imaging markers.
Neuroimage. 2021 Jan 1;224:117433. doi: 10.1016/j.neuroimage.2020.117433. Epub 2020 Oct 6.

本文引用的文献

2
MRI assessment of neuropathology in a transgenic mouse model of Alzheimer's disease.
Magn Reson Med. 2004 Apr;51(4):794-8. doi: 10.1002/mrm.20038.
4
Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B.
Ann Neurol. 2004 Mar;55(3):306-19. doi: 10.1002/ana.20009.
5
Assessment of motion gating strategies for mouse magnetic resonance at high magnetic fields.
J Magn Reson Imaging. 2004 Feb;19(2):229-37. doi: 10.1002/jmri.10454.
6
Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice.
Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12462-7. doi: 10.1073/pnas.2034101100. Epub 2003 Sep 29.
7
Detection of Alzheimer's amyloid in transgenic mice using magnetic resonance microimaging.
Magn Reson Med. 2003 Aug;50(2):293-302. doi: 10.1002/mrm.10529.
9
10
The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics.
Science. 2002 Jul 19;297(5580):353-6. doi: 10.1126/science.1072994.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验