Suppr超能文献

单眼剥夺猴子初级视觉皮层中神经丝标记的丧失。

Loss of neurofilament labeling in the primary visual cortex of monocularly deprived monkeys.

作者信息

Duffy Kevin R, Livingstone Margaret S

机构信息

Department of Psychology, Dalhousie University, Life Sciences Centre, Halifax, NS, Canada.

出版信息

Cereb Cortex. 2005 Aug;15(8):1146-54. doi: 10.1093/cercor/bhh214. Epub 2004 Nov 24.

Abstract

Visual experience during early life is important for the development of neural organizations that support visual function. Closing one eye (monocular deprivation) during this sensitive period can cause a reorganization of neural connections within the visual system that leaves the deprived eye functionally disconnected. We have assessed the pattern of neurofilament labeling in monocularly deprived macaque monkeys to examine the possibility that a cytoskeleton change contributes to deprivation-induced reorganization of neural connections within the primary visual cortex (V-1). Monocular deprivation for three months starting around the time of birth caused a significant loss of neurofilament labeling within deprived-eye ocular dominance columns. Three months of monocular deprivation initiated in adulthood did not produce a loss of neurofilament labeling. The evidence that neurofilament loss was found only when deprivation occurred during the sensitive period supports the notion that the loss permits restructuring of deprived-eye neural connections within the visual system. These results provide evidence that, in addition to reorganization of LGN inputs, the intrinsic circuitry of V-1 neurons is altered when monocular deprivation occurs early in development.

摘要

生命早期的视觉体验对于支持视觉功能的神经组织发育至关重要。在这个敏感期关闭一只眼睛(单眼剥夺)会导致视觉系统内神经连接的重新组织,使被剥夺的眼睛在功能上断开连接。我们评估了单眼剥夺的猕猴中神经丝标记的模式,以研究细胞骨架变化是否有助于初级视觉皮层(V-1)内剥夺诱导的神经连接重组。出生前后开始的三个月单眼剥夺导致被剥夺眼眼优势柱内神经丝标记显著减少。成年后开始的三个月单眼剥夺并未导致神经丝标记减少。仅在敏感期发生剥夺时才发现神经丝减少的证据,这支持了神经丝减少允许视觉系统内被剥夺眼神经连接重组的观点。这些结果提供了证据,表明除了外侧膝状体输入的重组外,发育早期发生单眼剥夺时,V-1神经元的内在回路也会改变。

相似文献

1
Loss of neurofilament labeling in the primary visual cortex of monocularly deprived monkeys.
Cereb Cortex. 2005 Aug;15(8):1146-54. doi: 10.1093/cercor/bhh214. Epub 2004 Nov 24.
2
Cytochrome oxidase and neurofilament reactivity in monocularly deprived human primary visual cortex.
Cereb Cortex. 2007 Jun;17(6):1283-91. doi: 10.1093/cercor/bhl038. Epub 2006 Jul 10.
3
Cytoskeleton alteration correlates with gross structural plasticity in the cat lateral geniculate nucleus.
Vis Neurosci. 2007 Nov-Dec;24(6):775-85. doi: 10.1017/S095252380707068X. Epub 2007 Oct 4.
7
Neuronal connections of eye-dominance columns in the cat cerebral cortex after monocular deprivation.
Neurosci Behav Physiol. 2008 Sep;38(7):669-75. doi: 10.1007/s11055-008-9031-4. Epub 2008 Aug 16.
9
Cortical effects of brief daily periods of unrestricted vision during early monocular form deprivation.
J Neurophysiol. 2006 May;95(5):2856-65. doi: 10.1152/jn.01265.2005. Epub 2006 Feb 1.
10
Effects of monocular deprivation on the visual fields of squirrel monkeys.
Behav Brain Res. 1991 Aug 29;44(2):129-31. doi: 10.1016/s0166-4328(05)80017-8.

引用本文的文献

2
Hierarchical Sparse Coding of Objects in Deep Convolutional Neural Networks.
Front Comput Neurosci. 2020 Dec 9;14:578158. doi: 10.3389/fncom.2020.578158. eCollection 2020.
3
Critical periods in amblyopia.
Vis Neurosci. 2018 Jan;35:E014. doi: 10.1017/S0952523817000219.
4
Postnatal development of cerebellar zones revealed by neurofilament heavy chain protein expression.
Front Neuroanat. 2013 May 9;7:9. doi: 10.3389/fnana.2013.00009. eCollection 2013.
5
Recovery of neurofilament following early monocular deprivation.
Front Syst Neurosci. 2012 Apr 9;6:22. doi: 10.3389/fnsys.2012.00022. eCollection 2012.
7
Unravelling the development of the visual cortex: implications for plasticity and repair.
J Anat. 2010 Oct;217(4):449-68. doi: 10.1111/j.1469-7580.2010.01275.x. Epub 2010 Aug 17.
8
Nonphosphorylated neurofilament protein is expressed by scattered neurons in the vestibular and precerebellar brainstem.
Brain Res. 2009 Nov 17;1298:46-56. doi: 10.1016/j.brainres.2009.08.073. Epub 2009 Sep 1.
9
Cytochrome oxidase and neurofilament reactivity in monocularly deprived human primary visual cortex.
Cereb Cortex. 2007 Jun;17(6):1283-91. doi: 10.1093/cercor/bhl038. Epub 2006 Jul 10.

本文引用的文献

1
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.
J Physiol. 1962 Jan;160(1):106-54. doi: 10.1113/jphysiol.1962.sp006837.
2
Single unit activity in striate cortex of unrestrained cats.
J Physiol. 1959 Sep 2;147(2):226-38. doi: 10.1113/jphysiol.1959.sp006238.
4
SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE.
J Neurophysiol. 1963 Nov;26:1003-17. doi: 10.1152/jn.1963.26.6.1003.
5
Experience-dependent regulation of the zincergic innervation of visual cortex in adult monkeys.
Cereb Cortex. 2003 Oct;13(10):1094-109. doi: 10.1093/cercor/13.10.1094.
7
Effects of experimental strabismus on the architecture of macaque monkey striate cortex.
J Comp Neurol. 2001 Sep 24;438(3):300-17. doi: 10.1002/cne.1317.
8
Developmental profiles of SMI-32 immunoreactivity in monkey striate cortex.
Brain Res Dev Brain Res. 2000 Jan 3;119(1):85-95. doi: 10.1016/s0165-3806(99)00162-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验