Suppr超能文献

一种基于偏向竞争的视觉忽视神经动力学模型。

A biased competition based neurodynamical model of visual neglect.

作者信息

Deco Gustavo, Zihl Josef

机构信息

Institució Catalana de Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Department of Technology Computational Neuroscience, Passeig de Circumval lació 8, 08003 Barcelona, Spain.

出版信息

Med Eng Phys. 2004 Nov;26(9):733-43. doi: 10.1016/j.medengphy.2004.06.011.

Abstract

On the computational basis of a neurodynamical cortical model, we investigate a specific top-down visual cognitive impairment in brain-damaged patients known as visual spatial neglect. The computational cortical model accounts the neurodynamics underlying selective visual attention, is based on the "biased competition hypothesis" and structured in several network modules which can be related with the different areas of the dorsal and ventral path of the visual cortex. Spatial and object attention are accomplished by a multiplicative gain control that emerges dynamically through intercortical mutual biased coupling. By damaging the model in different ways, a variety of dysfunctions associated with visual neglect can be simulated and explained as disruption of specific subsystems. Essentially, the damage destabilizes the underlying intra- and intermodular mutually biased neurodynamical competition that macroscopically yields the functional deficits observed in visual neglect patients. In particular, we are able to explain the asymmetrical effect of spatial cueing on neglect, and the phenomenon of extinction in the framework of visual search.

摘要

基于神经动力学皮层模型的计算方法,我们研究了脑损伤患者中一种特定的自上而下的视觉认知障碍,即视觉空间忽视。该计算皮层模型解释了选择性视觉注意背后的神经动力学,基于“偏向竞争假说”构建,由几个网络模块组成,这些模块可与视觉皮层背侧和腹侧通路的不同区域相关联。空间和物体注意通过乘法增益控制来实现,这种控制通过皮层间的相互偏向耦合动态出现。通过以不同方式损伤模型,可以模拟和解释与视觉忽视相关的各种功能障碍,将其视为特定子系统的破坏。本质上,损伤破坏了潜在的模块内和模块间相互偏向的神经动力学竞争,这种竞争在宏观上导致了视觉忽视患者中观察到的功能缺陷。特别是,我们能够在视觉搜索框架内解释空间线索对忽视的不对称影响以及消退现象。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验