Axen Seth D, Huang Xi-Ping, Cáceres Elena L, Gendelev Leo, Roth Bryan L, Keiser Michael J
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco , 675 Nelson Rising Lane NS 416A, San Francisco, California 94143, United States.
Department of Pharmacology, University of North Carolina School of Medicine , Chapel Hill, North Carolina 27599, United States.
J Med Chem. 2017 Sep 14;60(17):7393-7409. doi: 10.1021/acs.jmedchem.7b00696. Epub 2017 Aug 8.
Statistical and machine learning approaches predict drug-to-target relationships from 2D small-molecule topology patterns. One might expect 3D information to improve these calculations. Here we apply the logic of the extended connectivity fingerprint (ECFP) to develop a rapid, alignment-invariant 3D representation of molecular conformers, the extended three-dimensional fingerprint (E3FP). By integrating E3FP with the similarity ensemble approach (SEA), we achieve higher precision-recall performance relative to SEA with ECFP on ChEMBL20 and equivalent receiver operating characteristic performance. We identify classes of molecules for which E3FP is a better predictor of similarity in bioactivity than is ECFP. Finally, we report novel drug-to-target binding predictions inaccessible by 2D fingerprints and confirm three of them experimentally with ligand efficiencies from 0.442-0.637 kcal/mol/heavy atom.
统计和机器学习方法可从二维小分子拓扑模式预测药物与靶点的关系。人们可能期望三维信息能改进这些计算。在此,我们应用扩展连接性指纹(ECFP)的逻辑来开发一种分子构象异构体的快速、对齐不变的三维表示,即扩展三维指纹(E3FP)。通过将E3FP与相似性集成方法(SEA)相结合,相对于在ChEMBL20数据集上使用ECFP的SEA,我们实现了更高的精确召回性能以及等效的受试者工作特征性能。我们确定了几类分子,对于这些分子,E3FP在生物活性相似性预测方面比ECFP表现更好。最后,我们报告了二维指纹无法获得的新型药物与靶点结合预测,并通过0.442 - 0.637千卡/摩尔/重原子的配体效率实验证实了其中三个预测。