Suppr超能文献

三维分子结构的一种简单表示法。

A Simple Representation of Three-Dimensional Molecular Structure.

作者信息

Axen Seth D, Huang Xi-Ping, Cáceres Elena L, Gendelev Leo, Roth Bryan L, Keiser Michael J

机构信息

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco , 675 Nelson Rising Lane NS 416A, San Francisco, California 94143, United States.

Department of Pharmacology, University of North Carolina School of Medicine , Chapel Hill, North Carolina 27599, United States.

出版信息

J Med Chem. 2017 Sep 14;60(17):7393-7409. doi: 10.1021/acs.jmedchem.7b00696. Epub 2017 Aug 8.

Abstract

Statistical and machine learning approaches predict drug-to-target relationships from 2D small-molecule topology patterns. One might expect 3D information to improve these calculations. Here we apply the logic of the extended connectivity fingerprint (ECFP) to develop a rapid, alignment-invariant 3D representation of molecular conformers, the extended three-dimensional fingerprint (E3FP). By integrating E3FP with the similarity ensemble approach (SEA), we achieve higher precision-recall performance relative to SEA with ECFP on ChEMBL20 and equivalent receiver operating characteristic performance. We identify classes of molecules for which E3FP is a better predictor of similarity in bioactivity than is ECFP. Finally, we report novel drug-to-target binding predictions inaccessible by 2D fingerprints and confirm three of them experimentally with ligand efficiencies from 0.442-0.637 kcal/mol/heavy atom.

摘要

统计和机器学习方法可从二维小分子拓扑模式预测药物与靶点的关系。人们可能期望三维信息能改进这些计算。在此,我们应用扩展连接性指纹(ECFP)的逻辑来开发一种分子构象异构体的快速、对齐不变的三维表示,即扩展三维指纹(E3FP)。通过将E3FP与相似性集成方法(SEA)相结合,相对于在ChEMBL20数据集上使用ECFP的SEA,我们实现了更高的精确召回性能以及等效的受试者工作特征性能。我们确定了几类分子,对于这些分子,E3FP在生物活性相似性预测方面比ECFP表现更好。最后,我们报告了二维指纹无法获得的新型药物与靶点结合预测,并通过0.442 - 0.637千卡/摩尔/重原子的配体效率实验证实了其中三个预测。

相似文献

1
A Simple Representation of Three-Dimensional Molecular Structure.三维分子结构的一种简单表示法。
J Med Chem. 2017 Sep 14;60(17):7393-7409. doi: 10.1021/acs.jmedchem.7b00696. Epub 2017 Aug 8.
7
10
Design of chemical space networks on the basis of Tversky similarity.基于特沃斯基相似性的化学空间网络设计。
J Comput Aided Mol Des. 2016 Jan;30(1):1-12. doi: 10.1007/s10822-015-9891-y. Epub 2015 Dec 22.

引用本文的文献

本文引用的文献

3
OCEAN: Optimized Cross rEActivity estimatioN.海洋:优化的交叉反应性估计
J Chem Inf Model. 2016 Oct 24;56(10):2013-2023. doi: 10.1021/acs.jcim.6b00067. Epub 2016 Sep 26.
4
Molecular graph convolutions: moving beyond fingerprints.分子图卷积:超越指纹图谱
J Comput Aided Mol Des. 2016 Aug;30(8):595-608. doi: 10.1007/s10822-016-9938-8. Epub 2016 Aug 24.
5
A renaissance of neural networks in drug discovery.神经网络在药物发现中的复兴。
Expert Opin Drug Discov. 2016 Aug;11(8):785-95. doi: 10.1080/17460441.2016.1201262. Epub 2016 Jul 4.
7
ZINC 15--Ligand Discovery for Everyone.锌15——面向大众的配体发现平台。
J Chem Inf Model. 2015 Nov 23;55(11):2324-37. doi: 10.1021/acs.jcim.5b00559. Epub 2015 Nov 9.
8
KEGG as a reference resource for gene and protein annotation.KEGG作为基因和蛋白质注释的参考资源。
Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62. doi: 10.1093/nar/gkv1070. Epub 2015 Oct 17.
9
The Recognition of Identical Ligands by Unrelated Proteins.不相关蛋白质对相同配体的识别。
ACS Chem Biol. 2015 Dec 18;10(12):2772-84. doi: 10.1021/acschembio.5b00683. Epub 2015 Oct 12.
10
Prediction and validation of enzyme and transporter off-targets for metformin.二甲双胍的酶和转运体脱靶效应的预测与验证
J Pharmacokinet Pharmacodyn. 2015 Oct;42(5):463-75. doi: 10.1007/s10928-015-9436-y. Epub 2015 Sep 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验