Suppr超能文献

使用时间相依脆弱性对复发事件数据进行贝叶斯推断。

Bayesian inference for recurrent events data using time-dependent frailty.

作者信息

Manda Samuel O M, Meyer Renate

机构信息

Biostatistics Unit, School of Medicine, University of Leeds, 24 Hyde Terrace, Leeds LS2 9LN, UK.

出版信息

Stat Med. 2005 Apr 30;24(8):1263-74. doi: 10.1002/sim.1995.

Abstract

In medical studies, we commonly encounter multiple events data such as recurrent infection or attack times in patients suffering from a given disease. A number of statistical procedures for the analysis of such data use the Cox proportional hazards model, modified to include a random effect term called frailty which summarizes the dependence of recurrent times within a subject. These unobserved random frailty effects capture subject effects that are not explained by the known covariates. They are typically modelled constant over time and are assumed to be independently and identically distributed across subjects. However, in some situations, the subject-specific random frailty may change over time in the same manner as time-dependent covariate effects. This paper presents a time-dependent frailty model for recurrent failure time data in the Bayesian context and estimates it using a Markov chain Monte Carlo method. Our approach is illustrated by a data set relating to patients with chronic granulomatous disease and it is compared to the constant frailty model using the deviance information criterion.

摘要

在医学研究中,我们经常会遇到多事件数据,比如患有特定疾病患者的反复感染或发作时间。许多用于分析此类数据的统计程序都使用Cox比例风险模型,并进行了修改,纳入了一个称为脆弱性的随机效应项,该项总结了个体内复发时间的依赖性。这些未观察到的随机脆弱性效应捕捉了已知协变量无法解释的个体效应。它们通常被建模为随时间恒定,并假定在个体间独立同分布。然而,在某些情况下,个体特定的随机脆弱性可能会随时间以与时间相依协变量效应相同的方式变化。本文提出了一种贝叶斯背景下用于复发失效时间数据的时间相依脆弱性模型,并使用马尔可夫链蒙特卡罗方法对其进行估计。我们通过一个与慢性肉芽肿病患者相关的数据集来说明我们的方法,并使用偏差信息准则将其与恒定脆弱性模型进行比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验