Oliveira Helena C F, Cosso Ricardo G, Alberici Luciane C, Maciel Evelise N, Salerno Alessandro G, Dorighello Gabriel G, Velho Jesus A, de Faria Eliana C, Vercesi Aníbal E
Departamento de Fisiologia e Biofísica, Instituto de Biologia, SP, Brazil.
FASEB J. 2005 Feb;19(2):278-80. doi: 10.1096/fj.04-2095fje. Epub 2004 Nov 29.
Atherosclerotic disease remains a leading cause of death in westernized societies, and reactive oxygen species (ROS) play a pivotal role in atherogenesis. Mitochondria are the main intracellular sites of ROS generation and are also targets for oxidative damage. Here, we show that mitochondria from atherosclerosis-prone, hypercholesterolemic low-density lipoprotein (LDL) receptor knockout mice have oxidative phosphorylation efficiency similar to that from control mice but have a higher net production of ROS and susceptibility to develop membrane permeability transition. Increased ROS production was observed in mitochondria isolated from several tissues, including liver, heart, and brain, and in intact mononuclear cells from spleen. In contrast to control mitochondria, knockout mouse mitochondria did not sustain a reduced state of matrix NADPH, the main source of antioxidant defense against ROS. Experiments in vivo showed faster liver secretion rates and de novo synthesis of triglycerides and cholesterol in knockout than in control mice, suggesting that increased lipogenesis depleted the reducing equivalents from NADPH and generated a state of oxidative stress in hypercholesterolemic knockout mice. These data provide the first evidence of how oxidative stress is generated in LDL receptor defective cells and could explain the increased LDL oxidation, cell death, and atherogenesis seen in familiar hypercholesterolemia.
动脉粥样硬化疾病仍然是西方化社会中主要的死亡原因,而活性氧(ROS)在动脉粥样硬化形成过程中起着关键作用。线粒体是细胞内产生ROS的主要场所,也是氧化损伤的靶点。在此,我们表明,易患动脉粥样硬化的高胆固醇血症低密度脂蛋白(LDL)受体敲除小鼠的线粒体具有与对照小鼠相似的氧化磷酸化效率,但ROS的净产量更高,且更易发生膜通透性转变。在从包括肝脏、心脏和大脑在内的多个组织分离出的线粒体以及脾脏完整单核细胞中均观察到ROS产生增加。与对照线粒体不同,敲除小鼠的线粒体不能维持基质NADPH的还原状态,而基质NADPH是对抗ROS的主要抗氧化防御来源。体内实验表明,敲除小鼠肝脏中甘油三酯和胆固醇的分泌率及从头合成速度比对照小鼠更快,这表明脂肪生成增加耗尽了NADPH的还原当量,并在高胆固醇血症敲除小鼠中产生了氧化应激状态。这些数据首次证明了LDL受体缺陷细胞中氧化应激是如何产生的,并可以解释家族性高胆固醇血症中LDL氧化增加、细胞死亡及动脉粥样硬化形成的现象。