Suppr超能文献

大肠杆菌趋化系统中磷酸酶活性的单细胞荧光共振能量转移成像

Single-cell FRET imaging of phosphatase activity in the Escherichia coli chemotaxis system.

作者信息

Vaknin Ady, Berg Howard C

机构信息

Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.

出版信息

Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17072-7. doi: 10.1073/pnas.0407812101. Epub 2004 Nov 29.

Abstract

Two-component signaling systems, in which a receptor-coupled kinase is used to control the phosphorylation level of a response regulator, are commonly used in bacteria to sense their environment. In the chemotaxis system of Escherichia coli, the receptors, and thus the kinase, are clustered on the inner cell membrane. The phosphatase of this system also is recruited to receptor clusters, but the reason for this association is not clear. By using FRET imaging of single cells, we show that in vivo the phosphatase activity is substantially larger at the cluster, indicating that the signaling source (the kinase) and the signaling sink (the phosphatase) tend to be located at the same place in the cell. When this association is disrupted, a gradient in the concentration of the phosphorylated response regulator appears, and the chemotactic response is degraded. Such colocalization is inevitable in systems in which the activity of the kinase and the phosphatase are produced by the same enzyme. Evidently, this design enables a more rapid and spatially uniform response.

摘要

双组分信号系统通常用于细菌感知其环境,在该系统中,受体偶联激酶用于控制反应调节因子的磷酸化水平。在大肠杆菌的趋化系统中,受体以及激酶聚集在内细胞膜上。该系统的磷酸酶也被招募到受体簇,但这种关联的原因尚不清楚。通过对单细胞进行荧光共振能量转移成像,我们发现,在体内,簇处的磷酸酶活性显著更高,这表明信号源(激酶)和信号汇(磷酸酶)倾向于位于细胞内的同一位置。当这种关联被破坏时,磷酸化反应调节因子的浓度会出现梯度,趋化反应也会退化。在激酶和磷酸酶的活性由同一种酶产生的系统中,这种共定位是不可避免的。显然,这种设计能够实现更快速、空间上更均匀的反应。

相似文献

1
Single-cell FRET imaging of phosphatase activity in the Escherichia coli chemotaxis system.
Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17072-7. doi: 10.1073/pnas.0407812101. Epub 2004 Nov 29.
2
In vivo measurement by FRET of pathway activity in bacterial chemotaxis.
Methods Enzymol. 2007;423:365-91. doi: 10.1016/S0076-6879(07)23017-4.
3
A zipped-helix cap potentiates HAMP domain control of chemoreceptor signaling.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3519-E3528. doi: 10.1073/pnas.1721554115. Epub 2018 Mar 26.
4
FRET Analysis of the Chemotaxis Pathway Response.
Methods Mol Biol. 2018;1729:107-126. doi: 10.1007/978-1-4939-7577-8_11.
5
Chemotactic signaling via carbohydrate phosphotransferase systems in Escherichia coli.
Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):12159-64. doi: 10.1073/pnas.1205307109. Epub 2012 Jul 9.
6
Phosphatase localization in bacterial chemotaxis: divergent mechanisms, convergent principles.
Phys Biol. 2005 Jul 14;2(3):148-58. doi: 10.1088/1478-3975/2/3/002.
7
Regulation of phosphatase activity in bacterial chemotaxis.
J Mol Biol. 1998 Dec 11;284(4):1191-9. doi: 10.1006/jmbi.1998.2224.
8
Assays for CheC, FliY, and CheX as representatives of response regulator phosphatases.
Methods Enzymol. 2007;423:336-48. doi: 10.1016/S0076-6879(07)23015-0.

引用本文的文献

2
Signal integration in chemoreceptor complexes.
Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2312064121. doi: 10.1073/pnas.2312064121. Epub 2024 Mar 26.
4
The Chemoreceptor Sensory Adaptation System Produces Coordinated Reversals of the Flagellar Motors on an Escherichia coli Cell.
J Bacteriol. 2022 Dec 20;204(12):e0027822. doi: 10.1128/jb.00278-22. Epub 2022 Nov 30.
5
Suppression of cell-cell variation by cooperative interaction of phosphatase and response regulator.
Biophys J. 2022 Jan 18;121(2):319-326. doi: 10.1016/j.bpj.2021.12.012. Epub 2021 Dec 9.
6
Modular and Single-Cell Sensors of Bacterial Ser/Thr Kinase Activity.
ACS Synth Biol. 2021 Sep 17;10(9):2340-2350. doi: 10.1021/acssynbio.1c00250. Epub 2021 Aug 31.
7
Bacterial cell-body rotation driven by a single flagellar motor and by a bundle.
Biophys J. 2021 Jun 15;120(12):2454-2460. doi: 10.1016/j.bpj.2021.04.019. Epub 2021 Apr 29.
8
Protein Residues and a Novel Motif Involved in the Cellular Localization of CheZ in ORS571.
Front Microbiol. 2020 Dec 7;11:585140. doi: 10.3389/fmicb.2020.585140. eCollection 2020.
9
Fluctuations in Intracellular CheY-P Concentration Coordinate Reversals of Flagellar Motors in .
Biomolecules. 2020 Nov 12;10(11):1544. doi: 10.3390/biom10111544.
10
New Twists and Turns in Bacterial Locomotion and Signal Transduction.
J Bacteriol. 2019 Sep 20;201(20). doi: 10.1128/JB.00439-19. Print 2019 Oct 15.

本文引用的文献

1
Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli.
J Bacteriol. 2005 Jan;187(1):45-53. doi: 10.1128/JB.187.1.45-53.2005.
2
Effect of chemoreceptor modification on assembly and activity of the receptor-kinase complex in Escherichia coli.
J Bacteriol. 2004 Oct;186(19):6643-6. doi: 10.1128/JB.186.19.6643-6646.2004.
3
Stathmin-tubulin interaction gradients in motile and mitotic cells.
Science. 2004 Mar 19;303(5665):1862-6. doi: 10.1126/science.1094108.
4
Why the phosphotransferase system of Escherichia coli escapes diffusion limitation.
Biophys J. 2003 Jul;85(1):612-22. doi: 10.1016/S0006-3495(03)74505-6.
5
CheZ phosphatase localizes to chemoreceptor patches via CheA-short.
J Bacteriol. 2003 Apr;185(7):2354-61. doi: 10.1128/JB.185.7.2354-2361.2003.
6
Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer.
Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12669-74. doi: 10.1073/pnas.192463199. Epub 2002 Sep 13.
7
Receptor sensitivity in bacterial chemotaxis.
Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):123-7. doi: 10.1073/pnas.011589998. Epub 2001 Dec 11.
8
Multi-stage regulation, a key to reliable adaptive biochemical pathways.
Biophys J. 2001 Dec;81(6):3016-28. doi: 10.1016/S0006-3495(01)75942-5.
9
Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions.
Mol Microbiol. 2000 Aug;37(4):740-51. doi: 10.1046/j.1365-2958.2000.02044.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验