Cesaro-Tadic Sandro, Dernick Gregor, Juncker David, Buurman Gerrit, Kropshofer Harald, Michel Bruno, Fattinger Christof, Delamarche Emmanuel
IBM Research GmbH, Zurich Research Laboratory, Saumerstrasse 4, CH-8803 Ruschlikon, Switzerland.
Lab Chip. 2004 Dec;4(6):563-9. doi: 10.1039/b408964b. Epub 2004 Nov 10.
We use microfluidic chips to detect the biologically important cytokine tumor necrosis factor alpha (TNF- alpha) with picomolar sensitivity using sub-microliter volumes of samples and reagents. The chips comprise a number of independent capillary systems (CSs), each of which is composed of a filling port, an appended microchannel, and a capillary pump. Each CS fills spontaneously by capillary forces and includes a self-regulating mechanism that prevents adventitious drainage of the microchannels. Thus, interactive control of the flow in each CS is easily achieved via collective control of the evaporation in all CSs by means of two Peltier elements that can independently heat and cool. Long incubation times are crucial for high sensitivity assays and can be conveniently obtained by adjusting the evaporation rate to have low flow rates of approximately 30 nL min(-1). The assay is a sandwich fluorescence immunoassay and takes place on the surface of a poly(dimethylsiloxane)(PDMS) slab placed across the microchannels. We precoat PDMS with capture antibodies (Abs), localize the capture of analyte molecules using a chip, then bind the captured analyte molecules with fluorescently-tagged detection Abs using a second chip. The assay results in a mosaic of fluorescence signals on the PDMS surface which are measured using a fluorescence scanner. We show that PDMS is a compatible material for high sensitivity fluorescence assays, provided that detection antibodies with long excitation wavelength fluorophores ( > or =580 nm) are employed. The chip design, long incubation times, proper choice of fluorophores, and optimization of the detection Ab concentration all combine to achieve high-sensitivity assays. This is exemplified by an experiment with 170 assay sites, occupying an area of approximately 0.6 mm(2) on PDMS to detect TNF-alpha in 600 nL of a dendritic cell (DC) culture medium with a sensitivity of approximately 20 pg mL(-1)(1.14 pM).
我们使用微流控芯片,通过亚微升体积的样品和试剂,以皮摩尔灵敏度检测具有生物学重要性的细胞因子肿瘤坏死因子α(TNF-α)。这些芯片包含多个独立的毛细管系统(CSs),每个系统由一个填充端口、一个附加的微通道和一个毛细管泵组成。每个CS通过毛细作用力自发填充,并包括一个防止微通道意外排水的自调节机制。因此,通过两个可独立加热和冷却的珀尔帖元件对所有CS中的蒸发进行集体控制,可轻松实现对每个CS中流体的交互式控制。长孵育时间对于高灵敏度检测至关重要,可通过将蒸发速率调整为约30 nL min(-1)的低流速方便地获得。该检测为夹心荧光免疫检测,在横跨微通道放置的聚二甲基硅氧烷(PDMS)平板表面进行。我们用捕获抗体(Abs)预涂覆PDMS,使用芯片定位分析物分子的捕获,然后使用第二个芯片将捕获的分析物分子与荧光标记的检测Abs结合。该检测在PDMS表面产生荧光信号的镶嵌图案,使用荧光扫描仪进行测量。我们表明,只要使用具有长激发波长荧光团(≥580 nm)的检测抗体,PDMS就是用于高灵敏度荧光检测的兼容材料。芯片设计、长孵育时间、荧光团的正确选择以及检测Ab浓度的优化共同作用,实现了高灵敏度检测。这通过一个在PDMS上有170个检测位点、面积约为0.6 mm(2)的实验得到例证,该实验用于检测600 nL树突状细胞(DC)培养基中的TNF-α,灵敏度约为20 pg mL(-1)(1.14 pM)。