Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan.
Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Methods Mol Biol. 2024;2831:209-217. doi: 10.1007/978-1-0716-3969-6_14.
Plasticity of synaptic transmission underlies learning and memory. It is accompanied by changes in the density and size of synapses, collectively called structural plasticity. Therefore, understanding the mechanism of structural plasticity is critical for understanding the mechanism of synaptic plasticity. In this chapter, we describe the procedures and equipment required to image structural plasticity of a single dendritic spine, which hosts excitatory synapses in the central nervous system, and underlying molecular interactions/biochemical reactions using two-photon fluorescence lifetime microscopy (2P-FLIM) in combination with Förster resonance energy transfer (FRET)-based biosensors.
突触传递的可塑性是学习和记忆的基础。它伴随着突触密度和大小的变化,统称为结构可塑性。因此,了解结构可塑性的机制对于理解突触可塑性的机制至关重要。在本章中,我们描述了使用双光子荧光寿命显微镜(2P-FLIM)结合基于Förster 共振能量转移(FRET)的生物传感器来成像中枢神经系统中兴奋性突触所在的单个树突棘的结构可塑性,以及潜在的分子相互作用/生化反应所需的程序和设备。