Söhl Goran, Odermatt Benjamin, Maxeiner Stephan, Degen Joachim, Willecke Klaus
Institut für Genetik, Abteilung Molekulargenetik, Universität Bonn, Römerstr. 164, 53117 Bonn, Germany.
Brain Res Brain Res Rev. 2004 Dec;47(1-3):245-59. doi: 10.1016/j.brainresrev.2004.05.006.
Gap junctions represent direct intercellular conduits between contacting cells. The subunit proteins of these conduits are called connexins. To date, 20 and 21 connexin genes have been described in the mouse and human genome, respectively, many of them represent sequence-orthologous pairs. Targeted deletion of connexin genes in the mouse genome opened new insights into the biological function of these channel forming proteins, which, in some cases, could be correlated to phenotypic abnormalities in humans, suffering from inherited diseases caused by mutations in the corresponding orthologous connexin gene. Replacing the connexin coding DNA by an appropriate reporter gene has clarified in several cases its cell type specific expression in mouse brain. Various studies demonstrated that connexin36 is mainly expressed in interneurons of retina and brain. Targeted deletion of connexin36 evoked a loss of electrical signal transduction and interferes with synchrony which probably leads to defects in visual transmission and memory. Deletion of connexin43 in astrocytes of mouse brain resulted in increased spreading depression consistent with the notion of altered "spatial buffering" of K(+) ions and glutamate secreted by active neurons. General connexin30-deficiency led to hearing impairment and apoptosis of hair cells, similar to that observed in mice with cochlea specific deletion of connexin26. Reporter gene expression in connexin30-deficient mice indicated that astrocytes in certain brain regions and leptomeningeal as well as ependymal cells are labelled. Reporter gene expression in connexin45- and connexin47-deficient mice was used to reassign connexin45 expression to certain CNS neurons and connexin47 expression to oligodendrocytes.
间隙连接是相邻细胞之间的直接细胞间通道。这些通道的亚基蛋白称为连接蛋白。迄今为止,在小鼠和人类基因组中分别已描述了20个和21个连接蛋白基因,其中许多代表序列同源对。在小鼠基因组中对连接蛋白基因进行靶向缺失,为深入了解这些形成通道的蛋白质的生物学功能开辟了新途径,在某些情况下,这可能与患有由相应同源连接蛋白基因突变引起的遗传性疾病的人类的表型异常相关。用合适的报告基因替换连接蛋白编码DNA,在一些情况下已阐明其在小鼠大脑中的细胞类型特异性表达。各种研究表明,连接蛋白36主要在视网膜和大脑的中间神经元中表达。连接蛋白36的靶向缺失导致电信号转导丧失,并干扰同步性,这可能导致视觉传递和记忆缺陷。小鼠大脑星形胶质细胞中连接蛋白43的缺失导致扩散性抑制增加,这与活性神经元分泌的K(+)离子和谷氨酸的“空间缓冲”改变的概念一致。连接蛋白30的普遍缺失导致听力障碍和毛细胞凋亡,类似于在耳蜗特异性缺失连接蛋白26的小鼠中观察到的情况。连接蛋白30缺陷小鼠中的报告基因表达表明,某些脑区的星形胶质细胞以及软脑膜和室管膜细胞被标记。连接蛋白45和连接蛋白47缺陷小鼠中的报告基因表达用于将连接蛋白45的表达重新分配给某些中枢神经系统神经元,将连接蛋白47的表达重新分配给少突胶质细胞。