Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, United States.
Biochim Biophys Acta Biomembr. 2018 Jan;1860(1):102-123. doi: 10.1016/j.bbamem.2017.05.019. Epub 2017 Jun 1.
Gap junctions provide the basis for electrical synapses between neurons. Early studies in well-defined circuits in lower vertebrates laid the foundation for understanding various properties conferred by electrical synaptic transmission. Knowledge surrounding electrical synapses in mammalian systems unfolded first with evidence indicating the presence of gap junctions between neurons in various brain regions, but with little appreciation of their functional roles. Beginning at about the turn of this century, new approaches were applied to scrutinize electrical synapses, revealing the prevalence of neuronal gap junctions, the connexin protein composition of many of those junctions, and the myriad diverse neural systems in which they occur in the mammalian CNS. Subsequent progress indicated that electrical synapses constitute key elements in synaptic circuitry, govern the collective activity of ensembles of electrically coupled neurons, and in part orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie fundamental integrative processes. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
缝隙连接为神经元之间的电突触提供了基础。早期在低等脊椎动物中明确的电路中的研究为理解电突触传递赋予的各种特性奠定了基础。围绕哺乳动物系统中电突触的知识首先随着证据的出现而展开,这些证据表明在各种脑区的神经元之间存在缝隙连接,但对其功能作用的认识甚少。大约在本世纪之交,新的方法被应用于仔细研究电突触,揭示了神经元缝隙连接的普遍性、许多这些连接的连接蛋白组成,以及它们在哺乳动物中枢神经系统中发生的无数不同的神经系统。随后的进展表明,电突触是突触回路的关键组成部分,控制着电耦合神经元集合的集体活动,并在一定程度上协调了同步的神经元网络活动和节律性振荡,这些是基础整合过程的基础。本文是由 Jean Claude Herve 编辑的特刊“缝隙连接蛋白”的一部分。