Suppr超能文献

海马体尖波爆发与新皮层“上行状态”转变同时发生。

Hippocampal sharp wave bursts coincide with neocortical "up-state" transitions.

作者信息

Battaglia Francesco P, Sutherland Gary R, McNaughton Bruce L

机构信息

Arizona Research Laboratories--Division of Neural Systems, Memory, and Aging, University of Arizona, Tucson, Arizona 85724, USA.

出版信息

Learn Mem. 2004 Nov-Dec;11(6):697-704. doi: 10.1101/lm.73504.

Abstract

The sleeping neocortex shows nested oscillatory activity in different frequency ranges, characterized by fluctuations between "up-states" and "down-states." High-density neuronal ensemble recordings in rats now reveal the interaction between synchronized activity in the hippocampus and neocortex: Electroencephalographic sharp waves in the hippocampus were more probable during down-states than during up-states, and tended to coincide with transitions from down-states to up-states. The form of cortical activity fluctuations and their interactions with sharp waves depend on sleep depth: In deeper sleep stages, characterized by strong neocortical oscillation in the delta range or slower (approximately 0.8-4 Hz), sharp-wave-triggered peri-event time histograms (PETH) are consistent with a longer duration for down-states than for up-states. In lighter sleep, the sharp-wave-triggered PETH suggested longer up-states than down-states. These results highlight the interplay in the hippocampal/neocortical loop: Decreased neocortical input during down-states may be a factor in generation of sharp waves. In turn, sharp waves may facilitate down-to-up transitions. This interplay may reflect joint memory trace reactivation in the hippocampus and in the neocortex, possibly contributing to consolidation of long-term memory: Off-line reactivation of recent neural activity patterns in the hippocampus occurs during 50-100-msec electroencephalographic sharp waves, corresponding to pyramidal-cell population bursts. The neocortical up-states starting in correspondence with sharp waves may be influenced by the reactivated information carried by the hippocampal sharp wave.

摘要

睡眠中的新皮层在不同频率范围内呈现嵌套式振荡活动,其特征为“上行状态”和“下行状态”之间的波动。目前,对大鼠进行的高密度神经元群体记录揭示了海马体和新皮层同步活动之间的相互作用:海马体中的脑电图尖波在下行状态期间比在上行状态期间更有可能出现,并且倾向于与从下行状态向上行状态的转变同时发生。皮层活动波动的形式及其与尖波的相互作用取决于睡眠深度:在深度睡眠阶段,以δ波范围或更低频率(约0.8 - 4赫兹)的强烈新皮层振荡为特征,尖波触发的事件周围时间直方图(PETH)显示下行状态的持续时间比上行状态更长。在浅睡眠中,尖波触发的PETH表明上行状态比下行状态更长。这些结果突出了海马体/新皮层回路中的相互作用:下行状态期间新皮层输入的减少可能是尖波产生的一个因素。反过来,尖波可能促进从下行到上行的转变。这种相互作用可能反映了海马体和新皮层中联合记忆痕迹的重新激活,可能有助于长期记忆的巩固:在50 - 100毫秒的脑电图尖波期间会发生海马体中近期神经活动模式的离线重新激活,这与锥体细胞群体爆发相对应。与尖波同时开始的新皮层上行状态可能受到海马体尖波携带的重新激活信息的影响。

相似文献

1
Hippocampal sharp wave bursts coincide with neocortical "up-state" transitions.
Learn Mem. 2004 Nov-Dec;11(6):697-704. doi: 10.1101/lm.73504.
2
Slow-wave sleep and the consolidation of long-term memory.
World J Biol Psychiatry. 2010 Jun;11 Suppl 1:16-21. doi: 10.3109/15622971003637637.
3
Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep.
J Neurophysiol. 2006 Jul;96(1):62-70. doi: 10.1152/jn.00014.2006. Epub 2006 Apr 12.
5
NREM sleep in the rodent neocortex and hippocampus reflects excitable dynamics.
Nat Commun. 2019 Jun 6;10(1):2478. doi: 10.1038/s41467-019-10327-5.
6
Communication between neocortex and hippocampus during sleep in rodents.
Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):2065-9. doi: 10.1073/pnas.0437938100. Epub 2003 Feb 7.
7
Low-probability transmission of neocortical and entorhinal impulses through the perirhinal cortex.
J Neurophysiol. 2004 May;91(5):2079-89. doi: 10.1152/jn.01197.2003.
8
Long-range correlation of the membrane potential in neocortical neurons during slow oscillation.
Prog Brain Res. 2011;193:181-99. doi: 10.1016/B978-0-444-53839-0.00012-0.
9
Hippocampal-cortical interactions and the dynamics of memory trace reactivation.
Prog Brain Res. 2011;193:163-77. doi: 10.1016/B978-0-444-53839-0.00011-9.
10
Phase-locking of hippocampal interneurons' membrane potential to neocortical up-down states.
Nat Neurosci. 2006 Nov;9(11):1359-61. doi: 10.1038/nn1788. Epub 2006 Oct 15.

引用本文的文献

1
Layer 1 NDNF interneurons form distinct subpopulations with opposite activation patterns during sleep in freely behaving mice.
Proc Natl Acad Sci U S A. 2025 Aug 19;122(33):e2503139122. doi: 10.1073/pnas.2503139122. Epub 2025 Aug 14.
2
Preoptic area influences sleep-related seizures in a genetic epilepsy mouse model.
Cereb Cortex. 2025 Jul 1;35(7). doi: 10.1093/cercor/bhaf187.
3
Movie-watching evokes ripple-like activity within events and at event boundaries.
Nat Commun. 2025 Jul 1;16(1):5647. doi: 10.1038/s41467-025-60788-0.
5
A Distinct Down-to-Up Transition Assembly in the Retrosplenial Cortex during Slow-Wave Sleep.
J Neurosci. 2025 Apr 2;45(14):e1484242025. doi: 10.1523/JNEUROSCI.1484-24.2025.
6
Brain State-Dependent Neocortico-Hippocampal Network Dynamics Are Modulated by Postnatal Stimuli.
J Neurosci. 2025 Mar 5;45(10):e0053212025. doi: 10.1523/JNEUROSCI.0053-21.2025.
8
Learning-dependent gating of hippocampal inputs by frontal interneurons.
Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2403325121. doi: 10.1073/pnas.2403325121. Epub 2024 Oct 28.
9
Preoptic area controls sleep-related seizure onset in a genetic epilepsy mouse model.
bioRxiv. 2024 Sep 14:2023.11.24.568593. doi: 10.1101/2023.11.24.568593.
10
Neurofeedback training can modulate task-relevant memory replay rate in rats.
Elife. 2024 Jul 3;12:RP90944. doi: 10.7554/eLife.90944.

本文引用的文献

1
Low-probability transmission of neocortical and entorhinal impulses through the perirhinal cortex.
J Neurophysiol. 2004 May;91(5):2079-89. doi: 10.1152/jn.01197.2003.
2
Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas.
PLoS Biol. 2004 Jan;2(1):E24. doi: 10.1371/journal.pbio.0020024. Epub 2004 Jan 20.
3
Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex.
Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13638-43. doi: 10.1073/pnas.2235811100. Epub 2003 Oct 31.
4
Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model.
J Neurophysiol. 2003 May;89(5):2707-25. doi: 10.1152/jn.00845.2002. Epub 2003 Jan 15.
5
Communication between neocortex and hippocampus during sleep in rodents.
Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):2065-9. doi: 10.1073/pnas.0437938100. Epub 2003 Feb 7.
6
Coordinated reactivation of distributed memory traces in primate neocortex.
Science. 2002 Sep 20;297(5589):2070-3. doi: 10.1126/science.1073538.
7
The role of sleep in learning and memory.
Science. 2001 Nov 2;294(5544):1048-52. doi: 10.1126/science.1062856.
8
9
Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study.
Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1924-9. doi: 10.1073/pnas.98.4.1924. Epub 2001 Feb 6.
10
Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events.
Neuron. 2000 Nov;28(2):585-94. doi: 10.1016/s0896-6273(00)00135-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验