Tudzynski Bettina
Institut für Botanik der Westfälischen Wilhelms-Universität Münster, Schlossgarten 3, 48149, Münster, Germany.
Appl Microbiol Biotechnol. 2005 Mar;66(6):597-611. doi: 10.1007/s00253-004-1805-1. Epub 2004 Dec 2.
Gibberellins (GAs) constitute a large family of tetracyclic diterpenoid carboxylic acids, some members of which function as growth hormones in higher plants. As well as being phytohormones, GAs are also present in some fungi and bacteria. In recent years, GA biosynthetic genes from Fusarium fujikuroi and Arabidopsis thaliana have been cloned and well characterised. Although higher plants and the fungus both produce structurally identical GAs, there are important differences indicating that GA biosynthetic pathways have evolved independently in higher plants and fungi. The fact that horizontal gene transfer of GA genes from the plant to the fungus can be excluded, and that GA genes are obviously missing in closely related Fusarium species, raises the question of the origin of fungal GA biosynthetic genes. Besides characterisation of F. fujikuroi GA pathway genes, much progress has been made in the molecular analysis of regulatory mechanisms, especially the nitrogen metabolite repression controlling fungal GA biosynthesis. Basic research in this field has been shown to have an impact on biotechnology. Cloning of genes, construction of knock-out mutants, gene amplification, and regulation studies at the molecular level are powerful tools for improvement of production strains. Besides increased yields of the final product, GA3, it is now possible to produce intermediates of the GA biosynthetic pathway, such as ent-kaurene, ent-kaurenoic acid, and GA14, in high amounts using different knock-out mutants. This review concentrates mainly on the fungal biosynthetic pathway, the genes and enzymes involved, the regulation network, the biotechnological relevance of recent studies, and on evolutionary aspects of GA biosynthetic genes.
赤霉素(GAs)是一个由四环二萜类羧酸组成的大家族,其中一些成员在高等植物中作为生长激素发挥作用。除了作为植物激素外,赤霉素也存在于一些真菌和细菌中。近年来,来自藤仓镰孢菌和拟南芥的赤霉素生物合成基因已被克隆并得到充分表征。尽管高等植物和真菌都能产生结构相同的赤霉素,但存在重要差异,这表明赤霉素生物合成途径在高等植物和真菌中是独立进化的。赤霉素基因从植物到真菌的水平基因转移可以被排除,而且在密切相关的镰孢菌种中明显缺少赤霉素基因,这就提出了真菌赤霉素生物合成基因起源的问题。除了对藤仓镰孢菌赤霉素途径基因进行表征外,在调控机制的分子分析方面也取得了很大进展,特别是氮代谢物阻遏对真菌赤霉素生物合成的控制。该领域的基础研究已显示出对生物技术有影响。基因克隆、敲除突变体的构建、基因扩增以及分子水平的调控研究是改良生产菌株的有力工具。除了提高最终产物赤霉素3的产量外,现在利用不同的敲除突变体还能够大量生产赤霉素生物合成途径的中间体,如内根-贝壳杉烯、内根-贝壳杉烯酸和赤霉素14。本综述主要集中在真菌生物合成途径、相关基因和酶、调控网络、近期研究的生物技术相关性以及赤霉素生物合成基因的进化方面。