Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany.
Appl Microbiol Biotechnol. 2013 Apr;97(7):2979-95. doi: 10.1007/s00253-012-4377-5. Epub 2012 Sep 18.
The rice pathogen Fusarium fujikuroi is known to produce a wide range of secondary metabolites, such as the pigments bikaverin and fusarubins, the mycotoxins fusarins and fusaric acid, and the phytohormones gibberellic acids (GAs), which are applied as plant growth regulators in agri- and horticulture. The development of high-producing strains is a prerequisite for the efficient biotechnological production of GAs. In this work, we used different molecular approaches for strain improvement to directly affect expression of early isoprenoid genes as well as GA biosynthetic genes. Overexpression of the first GA pathway gene ggs2, encoding geranylgeranyl diphosphate synthase 2, or additional integration of ggs2 and cps/ks, the latter encoding the bifunctional ent-copalyldiphosphate synthase/ent-kaurene synthase, revealed an enhanced production level of 150%. However, overexpression of hmgR and fppS, encoding the key enzymes of the mevalonate pathway, hydroxymethylglutaryl coenzyme A reductase, and farnesyldiphosphate synthase, resulted in a reduced production level probably due to a negative feedback regulation of HmgR. Subsequent deletion of the transmembrane domains of HmgR and overexpression of the remaining catalytic domain led to an increased GA content (250%). Using green fluorescent protein and mCherry fusion constructs, we localized Cps/Ks in the cytosol, Ggs2 in small point-like structures, which are not the peroxisomes, and HmgR at the endoplasmatic reticulum. In summary, it was shown for the first time that amplification or truncation of key enzymes of the isoprenoid and GA pathway results in elevated production levels (2.5-fold). Fluorescence microscopy revealed localization of the key enzymes in different compartments.
稻瘟病菌 Fusarium fujikuroi 已知会产生广泛的次生代谢产物,例如类胡萝卜素 bikaverin 和 fusarubins、真菌毒素 fusarins 和 fusaric acid 以及植物激素赤霉素 (GA),这些物质在农业和园艺中用作植物生长调节剂。高产菌株的开发是 GA 高效生物技术生产的前提。在这项工作中,我们使用了不同的分子方法来进行菌株改良,以直接影响早期类异戊二烯基因以及 GA 生物合成基因的表达。过表达第一个 GA 途径基因 ggs2(编码香叶基二磷酸合酶 2)或额外整合 ggs2 和 cps/ks(编码双功能 ent-copalyldiphosphate 合酶/ent-kaurene 合酶),可将 150%的生产水平提高。然而,过表达编码甲羟戊酸途径关键酶羟甲基戊二酰辅酶 A 还原酶和法呢基二磷酸合酶的 hmgR 和 fppS,可能由于 HmgR 的负反馈调节,导致生产水平降低。随后,删除 HmgR 的跨膜结构域并过表达剩余的催化结构域,可使 GA 含量增加(250%)。使用绿色荧光蛋白和 mCherry 融合构建体,我们将 Cps/Ks 定位在细胞质中,Ggs2 定位在小的点状结构中(不是过氧化物酶体),而 HmgR 则定位在内质网上。总之,这是首次表明异戊二烯和 GA 途径的关键酶的扩增或截断会导致产量提高(2.5 倍)。荧光显微镜显示关键酶在不同隔室中的定位。