Suppr超能文献

经济性、速度和大小至关重要:驱动核基因组小型化和扩张的进化力量。

Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion.

作者信息

Cavalier-Smith Thomas

机构信息

Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.

出版信息

Ann Bot. 2005 Jan;95(1):147-75. doi: 10.1093/aob/mci010.

Abstract

BACKGROUND

Nuclear genome size varies 300 000-fold, whereas transcriptome size varies merely 17-fold. In the largest genomes nearly all DNA is non-genic secondary DNA, mostly intergenic but also within introns. There is now compelling evidence that secondary DNA is functional, i.e. positively selected by organismal selection, not the purely neutral or 'selfish' outcome of mutation pressure. The skeletal DNA theory argued that nuclear volumes are genetically determined primarily by nuclear DNA amounts, modulated somewhat by genes affecting the degree of DNA packing or unfolding; the huge spread of nuclear genome sizes is the necessary consequence of the origin of the nuclear envelope and the nucleation of its assembly by DNA, plus the adaptively significant 300 000-fold range of cell volumes and selection for balanced growth by optimizing karyoplasmic volume ratios (essentially invariant with cell volume in growing/multiplying cells). This simple explanation of the C-value paradox is refined here in the light of new insights into the nature of heterochromatin and the nuclear lamina, the genetic control of cell volume, and large-scale eukaryote phylogeny, placing special emphasis on protist test cases of the basic principles of nuclear genome size evolution.

GENOME MINIATURIZATION

and Expansion Intracellular parasites (e.g. Plasmodium, microsporidia) dwarfed their genomes by gene loss and eliminating virtually all secondary DNA. The primary driving forces for genome reduction are metabolic and spatial economy and cell multiplication speed. Most extreme nuclear shrinkage yielded genomes as tiny as 0.38 Mb (making the nuclear genome size range effectively 1.8 million-fold!) in some minute enslaved nuclei (nucleomorphs) of cryptomonads and chlorarachneans, chimaeric cells that also retain a separate normal large nucleus. The latter shows typical correlation between genome size and cell volume, but nucleomorphs do not despite co-existing in the same cell for >500 My. Thus mutation pressure does not inexorably increase genome size; selection can eliminate essentially all non-coding DNA if need be. Nucleomorphs and microsporidia even reduced gene size. Expansion of secondary DNA in the main nucleus, and in large-celled eukaryotes generally, must be positively selected for function. Ciliate nuclear dimorphism provides a key test that refutes the selfish DNA and strongly supports the skeletal DNA/karyoplasmic ratio interpretation of genome size evolution.

GENETIC CONTROL OF CELL VOLUME IS MULTIGENIC

The quantitatively proportional correlation between genome size and cell size cannot be explained by purely mutational theories, as eukaryote cell volumes are causally determined by cell cycle control genes, not by DNA amounts.

摘要

背景

核基因组大小相差30万倍,而转录组大小仅相差17倍。在最大的基因组中,几乎所有DNA都是非基因的二级DNA,大部分是基因间的,但也存在于内含子中。现在有令人信服的证据表明,二级DNA是有功能的,即通过机体选择被正向选择,而不是突变压力的纯粹中性或“自私”结果。骨架DNA理论认为,核体积主要由核DNA含量遗传决定,受影响DNA包装或解折叠程度的基因的一定调节;核基因组大小的巨大差异是核膜起源及其由DNA组装成核的必然结果,加上细胞体积有适应性意义的30万倍范围以及通过优化核质体积比(在生长/增殖细胞中基本不随细胞体积变化)来选择平衡生长。根据对异染色质和核纤层性质、细胞体积的遗传控制以及大型真核生物系统发育的新见解,这里对C值悖论的这一简单解释进行了完善,特别强调了核基因组大小进化基本原理的原生生物测试案例。

基因组小型化与扩展

细胞内寄生虫(如疟原虫、微孢子虫)通过基因丢失和几乎消除所有二级DNA使它们的基因组变小。基因组缩减主要驱动力是代谢和空间经济性以及细胞增殖速度。在隐藻和绿藻虫的一些微小的被奴役细胞核(核质体)中,最极端的核收缩产生了小至0.38 Mb的基因组(使核基因组大小范围实际上达到180万倍!),这些嵌合细胞还保留着一个单独的正常大细胞核。后者显示出基因组大小与细胞体积之间典型的相关性,但核质体尽管在同一细胞中共存超过5亿年却并非如此。因此,突变压力不会不可避免地增加基因组大小;如有需要,选择可以消除几乎所有非编码DNA。核质体和微孢子虫甚至减小了基因大小。在主核以及一般大型真核细胞中,二级DNA的扩展必定是为了功能而被正向选择。纤毛虫的核二态性提供了一个关键测试,反驳了自私DNA,并有力支持了基因组大小进化的骨架DNA/核质比解释。

细胞体积的遗传控制是多基因的

基因组大小与细胞大小之间的定量比例相关性不能用纯粹的突变理论来解释,因为真核细胞体积是由细胞周期控制基因因果决定的,而不是由DNA含量决定。

相似文献

2
3
Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes.
Proc Biol Sci. 1999 Oct 22;266(1433):2053-9. doi: 10.1098/rspb.1999.0886.
4
Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma.
Biol Rev Camb Philos Soc. 2001 Feb;76(1):65-101. doi: 10.1017/s1464793100005595.
5
Nucleomorphs: enslaved algal nuclei.
Curr Opin Microbiol. 2002 Dec;5(6):612-9. doi: 10.1016/s1369-5274(02)00373-9.
6
Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).
Philos Trans R Soc Lond B Biol Sci. 2003 Jan 29;358(1429):109-33; discussion 133-4. doi: 10.1098/rstb.2002.1194.
8
The C- and G-value paradox with polyploidy, repeatomes, introns, phenomes and cell economy.
Genes Genomics. 2020 Jul;42(7):699-714. doi: 10.1007/s13258-020-00941-9. Epub 2020 May 22.
9
Causes and effects of nuclear genome reduction.
Curr Opin Genet Dev. 2005 Dec;15(6):601-8. doi: 10.1016/j.gde.2005.09.003. Epub 2005 Sep 26.

引用本文的文献

1
Small Genome Size Ensures Adaptive Flexibility for an Alpine Ginger.
Genome Biol Evol. 2025 Jul 30;17(8). doi: 10.1093/gbe/evaf151.
4
Nuclear Structure, Size Regulation, and Role in Cell Migration.
Cells. 2024 Dec 23;13(24):2130. doi: 10.3390/cells13242130.
6
Diatom abundance in the polar oceans is predicted by genome size.
PLoS Biol. 2024 Aug 8;22(8):e3002733. doi: 10.1371/journal.pbio.3002733. eCollection 2024 Aug.
7
Tetrapod sperm length evolution in relation to body mass is shaped by multiple trade-offs.
Nat Commun. 2024 Jul 22;15(1):6160. doi: 10.1038/s41467-024-50391-0.
8
Eukaryotic cell size regulation and its implications for cellular function and dysfunction.
Physiol Rev. 2024 Oct 1;104(4):1679-1717. doi: 10.1152/physrev.00046.2023. Epub 2024 Jun 20.
10

本文引用的文献

2
Genome evolution in the genus Sorghum (Poaceae).
Ann Bot. 2005 Jan;95(1):219-27. doi: 10.1093/aob/mci015.
3
Evolution of DNA amounts across land plants (embryophyta).
Ann Bot. 2005 Jan;95(1):207-17. doi: 10.1093/aob/mci014.
4
The high genomic mutation rate.
Curr Biol. 1992 Nov;2(11):605-7. doi: 10.1016/0960-9822(92)90171-6.
5
The desoxyribonucleic acid content of animal cells and its evolutionary significance.
J Gen Physiol. 1951 Mar 20;34(4):451-62. doi: 10.1085/jgp.34.4.451.
6
Histone sumoylation is associated with transcriptional repression.
Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13225-30. doi: 10.1073/pnas.1735528100. Epub 2003 Oct 24.
7
Structure, function, and regulation of budding yeast kinetochores.
Annu Rev Cell Dev Biol. 2003;19:519-39. doi: 10.1146/annurev.cellbio.19.111301.155607.
9
A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes.
Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12265-70. doi: 10.1073/pnas.1434476100. Epub 2003 Oct 6.
10
ROLES OF DEOXYRIBONUCLEIC ACID IN INHERITANCE.
Nature. 1964 Jun 6;202:960-8. doi: 10.1038/202960a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验