Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.
BMC Biol. 2018 Nov 28;16(1):137. doi: 10.1186/s12915-018-0593-5.
The evolution of photosynthesis has been a major driver in eukaryotic diversification. Eukaryotes have acquired plastids (chloroplasts) either directly via the engulfment and integration of a photosynthetic cyanobacterium (primary endosymbiosis) or indirectly by engulfing a photosynthetic eukaryote (secondary or tertiary endosymbiosis). The timing and frequency of secondary endosymbiosis during eukaryotic evolution is currently unclear but may be resolved in part by studying cryptomonads, a group of single-celled eukaryotes comprised of both photosynthetic and non-photosynthetic species. While cryptomonads such as Guillardia theta harbor a red algal-derived plastid of secondary endosymbiotic origin, members of the sister group Goniomonadea lack plastids. Here, we present the genome of Goniomonas avonlea-the first for any goniomonad-to address whether Goniomonadea are ancestrally non-photosynthetic or whether they lost a plastid secondarily.
We sequenced the nuclear and mitochondrial genomes of Goniomonas avonlea and carried out a comparative analysis of Go. avonlea, Gu. theta, and other cryptomonads. The Go. avonlea genome assembly is ~ 92 Mbp in size, with 33,470 predicted protein-coding genes. Interestingly, some metabolic pathways (e.g., fatty acid biosynthesis) predicted to occur in the plastid and periplastidal compartment of Gu. theta appear to operate in the cytoplasm of Go. avonlea, suggesting that metabolic redundancies were generated during the course of secondary plastid integration. Other cytosolic pathways found in Go. avonlea are not found in Gu. theta, suggesting secondary loss in Gu. theta and other plastid-bearing cryptomonads. Phylogenetic analyses revealed no evidence for algal endosymbiont-derived genes in the Go. avonlea genome. Phylogenomic analyses point to a specific relationship between Cryptista (to which cryptomonads belong) and Archaeplastida.
We found no convincing genomic or phylogenomic evidence that Go. avonlea evolved from a secondary red algal plastid-bearing ancestor, consistent with goniomonads being ancestrally non-photosynthetic eukaryotes. The Go. avonlea genome sheds light on the physiology of heterotrophic cryptomonads and serves as an important reference point for studying the metabolic "rewiring" that took place during secondary plastid integration in the ancestor of modern-day Cryptophyceae.
光合作用的进化是真核生物多样化的主要驱动力。真核生物通过吞噬和整合光合蓝细菌(初级内共生)或通过吞噬光合真核生物(二次或三次内共生)直接获得质体(叶绿体)。真核生物进化过程中二次内共生的时间和频率目前尚不清楚,但通过研究 cryptomonads 可能部分解决,cryptomonads 是由光合和非光合物种组成的单细胞真核生物群。虽然像 Guillardia theta 这样的 cryptomonads 拥有源自二次内共生的红藻质体,但姐妹群 Goniomonadea 的成员却没有质体。在这里,我们展示了 Goniomonas avonlea 的基因组 - 第一个 goniomonad 的基因组 - 以确定 Goniomonadea 是否是原始非光合生物,或者它们是否是二次失去了质体。
我们对 Goniomonas avonlea 的核和线粒体基因组进行了测序,并对 Go.avonlea、Gu.theta 和其他 cryptomonads 进行了比较分析。Go.avonlea 基因组组装大小约为 92 Mbp,预测有 33470 个编码蛋白的基因。有趣的是,一些代谢途径(例如脂肪酸生物合成)预测发生在 Gu.theta 的质体和周质空间中,似乎在 Go.avonlea 的细胞质中运行,这表明在二次质体整合过程中产生了代谢冗余。在 Go.avonlea 中发现的其他细胞质途径在 Gu.theta 中不存在,这表明 Gu.theta 和其他带有质体的 cryptomonads 发生了二次丢失。系统发育分析没有发现 Go.avonlea 基因组中藻类内共生体衍生基因的证据。系统基因组分析表明 Cryptista(cryptomonads 所属的类群)与 Archaeplastida 之间存在特定关系。
我们没有发现令人信服的基因组或系统基因组证据表明 Go.avonlea 是从具有二次红藻质体的祖先进化而来的,这与 goniomonads 是原始非光合真核生物一致。Go.avonlea 基因组揭示了异养 cryptomonads 的生理学,并为研究现代 cryptophyceae 祖先中二次质体整合过程中发生的代谢“重布线”提供了重要参考点。