Suppr超能文献

病例队列研究的样本量/效能计算

Sample size/power calculation for case-cohort studies.

作者信息

Cai Jianwen, Zeng Donglin

机构信息

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7420, USA.

出版信息

Biometrics. 2004 Dec;60(4):1015-24. doi: 10.1111/j.0006-341X.2004.00257.x.

Abstract

In epidemiologic studies and disease prevention trials, interest often involves estimation of the relationship between some disease endpoints and individual exposure. In some studies, due to the rarity of the disease and the cost in collecting the exposure information for the entire cohort, a case-cohort design, which consists of a small random sample of the whole cohort and all the diseased subjects, is often used. Previous work has focused on analyzing data from the case-cohort design and few have discussed the sample size issues. In this article, we describe two tests for the case-cohort design, which can be treated as a natural generalization of log-rank test in the full cohort design. We derive an explicit form for power/sample size calculation based on these two tests. A number of simulation studies have been used to illustrate the efficiency of the tests for the case-cohort design. An example is provided on how to use the formula.

摘要

在流行病学研究和疾病预防试验中,关注点通常在于估计某些疾病终点与个体暴露之间的关系。在一些研究中,由于疾病的罕见性以及为整个队列收集暴露信息的成本,常采用病例队列设计,该设计由整个队列的一个小随机样本和所有患病个体组成。以往的工作主要集中在分析病例队列设计的数据上,很少有人讨论样本量问题。在本文中,我们描述了针对病例队列设计的两种检验方法,它们可被视为全队列设计中对数秩检验的自然推广。我们基于这两种检验推导出了功效/样本量计算的显式形式。已进行了多项模拟研究以说明病例队列设计检验的效率。还给出了一个关于如何使用该公式的示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验