Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612-7231, USA.
ACS Chem Biol. 2010 Jul 16;5(7):667-80. doi: 10.1021/cb100054m.
Protein S-nitrosation has been argued to be the most important signaling pathway mediating the bioactivity of NO. This post-translational modification of protein thiols is the result of chemical nitrosation of cysteine residues. The term NO-donors covers very different chemical classes, from clinical therapeutics to probes of routine use in chemical biology; their different chemistry is predicted to result in distinctive biology regulated by protein S-nitrosation. To measure the extent of protein S-nitrosation by NO-donors, a proteomic mass spectrometry method was developed, which quantitates free thiol versus nitrosothiol for each modified cysteine residue, coined d-Switch. This method is adapted from the biotin switch (BST) method, used extensively to identify S-nitrosated proteins in complex biological mixtures; however, BST does not quantitate free thiol. Since glutathione-S-transferase P1-1 (GST-P1) has been proposed to be a biological "NO-carrier", GST-P1 was used as a reporter protein. The 5 different chemical classes of NO-donors compared by d-Switch demonstrated very different profiles of protein S-nitrosation and response to O(2) and cysteine, although all NO-donors were oxidants toward GST-P1. The low limits of detection and the ability to use established MS database searching allowed facile generalization of the d-Switch method. Therefore after incubation of neuronal cell cultures with nitrosothiol, it was possible to quantitate not only S-nitrosation of GST-P1 but also many other proteins, including novel targets such as ubiquitin carboxyl-terminal esterase L1 (UCHL1). Moreover, d-Switch also allowed identification of non-nitrosated proteins and quantitation of degree of nitrosation for individual protein thiols.
蛋白质 S-亚硝基化被认为是介导 NO 生物活性的最重要信号通路。这种蛋白质硫醇的翻译后修饰是半胱氨酸残基化学亚硝化的结果。NO 供体一词涵盖了非常不同的化学类别,从临床治疗到化学生物学常规使用的探针;它们不同的化学性质预计会导致受蛋白质 S-亚硝基化调节的独特生物学。为了测量 NO 供体引起的蛋白质 S-亚硝基化程度,开发了一种蛋白质组学质谱方法,该方法定量每个修饰半胱氨酸残基的游离巯基与亚硝基硫醇,称为 d-Switch。该方法源自广泛用于鉴定复杂生物混合物中 S-亚硝基化蛋白质的生物素开关 (BST) 方法;然而,BST 不能定量游离巯基。由于谷胱甘肽 S-转移酶 P1-1 (GST-P1) 已被提议为生物“NO 载体”,因此 GST-P1 被用作报告蛋白。通过 d-Switch 比较的 5 种不同化学类别的 NO 供体表现出非常不同的蛋白质 S-亚硝基化谱和对 O2 和半胱氨酸的反应,尽管所有 NO 供体都是 GST-P1 的氧化剂。检测限低且能够使用已建立的 MS 数据库搜索允许轻松推广 d-Switch 方法。因此,在用亚硝基硫醇孵育神经元细胞培养物后,不仅可以定量 GST-P1 的 S-亚硝基化,还可以定量许多其他蛋白质,包括泛素羧基末端酯酶 L1 (UCHL1) 等新靶标。此外,d-Switch 还允许鉴定非亚硝基化蛋白并定量单个蛋白巯基的亚硝基化程度。