Tan K H, Chua C K, Leong K F, Cheah C M, Gui W S, Tan W S, Wiria F E
School of Mechanical and Production Engineering, Nanyang Technological University, Singapore.
Biomed Mater Eng. 2005;15(1-2):113-24.
The ability to use biological substitutes to repair or replace damaged tissues lead to the development of Tissue Engineering (TE), a field that is growing in scope and importance within biomedical engineering. Anchorage dependent cell types often rely on the use of temporary three-dimensional scaffolds to guide cell proliferation. Computer-controlled fabrication techniques such as Rapid Prototyping (RP) processes have been recognised to have an edge over conventional manual-based scaffold fabrication techniques due to their ability to create structures with complex macro- and micro-architectures. Despite the immense capabilities of RP fabrication for scaffold production, commercial available RP modelling materials are not biocompatible and are not suitable for direct use in the fabrication of scaffolds. Work is carried out with several biocompatible polymers such as Polyetheretherketone (PEEK), Poly(vinyl alcohol) (PVA), Polycaprolactone (PCL) and Poly(L-lactic acid) (PLLA) and a bioceramic namely, Hydroxyapatite (HA). The parameters of the selective laser sintering (SLS) process are optimised to cater to the processing of these materials. SLS-fabricated scaffold specimens are examined using a Scanning Electron Microscope (SEM). Results observed from the micrographs indicate the viability of them being used for building TE scaffolds and ascertain the capabilities of the SLS process for creating highly porous scaffolds for Tissue Engineering applications.
使用生物替代品修复或替换受损组织的能力推动了组织工程(TE)的发展,这一领域在生物医学工程中的范围和重要性正不断扩大。依赖贴壁生长的细胞类型通常依靠使用临时三维支架来引导细胞增殖。诸如快速成型(RP)工艺等计算机控制制造技术,因其能够创建具有复杂宏观和微观结构的结构,而被认为比传统的手工支架制造技术更具优势。尽管RP制造在支架生产方面具有巨大能力,但市售的RP建模材料不具有生物相容性,不适用于直接制造支架。目前正在使用几种生物相容性聚合物开展相关工作,如聚醚醚酮(PEEK)、聚乙烯醇(PVA)、聚己内酯(PCL)和聚(L-乳酸)(PLLA),以及一种生物陶瓷,即羟基磷灰石(HA)。对选择性激光烧结(SLS)工艺的参数进行了优化,以适应这些材料的加工。使用扫描电子显微镜(SEM)对SLS制造的支架样本进行检查。从显微照片观察到的结果表明了它们用于构建组织工程支架的可行性,并确定了SLS工艺用于制造组织工程应用的高度多孔支架的能力。