Suppr超能文献

使用拟牛顿算法的统一三维结构和投影方向优化

Unified 3-D structure and projection orientation refinement using quasi-Newton algorithm.

作者信息

Yang Chao, Ng Esmond G, Penczek Pawel A

机构信息

Lawrence Berkeley National Laboratory, Computational Research Division, Berkeley, CA 94720, USA.

出版信息

J Struct Biol. 2005 Jan;149(1):53-64. doi: 10.1016/j.jsb.2004.08.010.

Abstract

We describe an algorithm for simultaneous refinement of a three-dimensional (3-D) density map and of the orientation parameters of two-dimensional (2-D) projections that are used to reconstruct this map. The application is in electron microscopy, where the 3-D structure of a protein has to be determined from a set of 2-D projections collected at random but initially unknown angles. The design of the algorithm is based on the assumption that initial low resolution approximation of the density map and reasonable guesses for orientation parameters are available. Thus, the algorithm is applicable in final stages of the structure refinement, when the quality of the results is of main concern. We define the objective function to be minimized in real space and solve the resulting nonlinear optimization problem using a Quasi-Newton algorithm. We calculate analytical derivatives with respect to density distribution and the finite difference approximations of derivatives with respect to orientation parameters. We demonstrate that calculation of derivatives is robust with respect to noise in the data. This is due to the fact that noise is annihilated by the back-projection operations. Our algorithm is distinguished from other orientation refinement methods (i) by the simultaneous update of the density map and orientation parameters resulting in a highly efficient computational scheme and (ii) by the high quality of the results produced by a direct minimization of the discrepancy between the 2-D data and the projected views of the reconstructed 3-D structure. We demonstrate the speed and accuracy of our method by using simulated data.

摘要

我们描述了一种算法,用于同时优化三维(3-D)密度图以及用于重建该密度图的二维(2-D)投影的取向参数。该算法应用于电子显微镜领域,在该领域中,蛋白质的三维结构必须从一组随机收集但初始角度未知的二维投影中确定。算法的设计基于这样的假设:密度图的初始低分辨率近似以及取向参数的合理猜测是可用的。因此,该算法适用于结构优化的最后阶段,此时结果的质量是主要关注点。我们定义了要在实空间中最小化的目标函数,并使用拟牛顿算法解决由此产生的非线性优化问题。我们计算关于密度分布的解析导数以及关于取向参数的导数的有限差分近似。我们证明了导数的计算对于数据中的噪声具有鲁棒性。这是因为噪声通过反投影操作被消除了。我们的算法与其他取向优化方法的区别在于:(i)通过同时更新密度图和取向参数,从而形成一种高效的计算方案;(ii)通过直接最小化二维数据与重建的三维结构的投影视图之间的差异所产生的高质量结果。我们通过使用模拟数据展示了我们方法的速度和准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验