Laboratory of Physical Chemistry, ETH, Swiss Federal Institute of Technology, 8093, Zürich, Switzerland.
J Biomol NMR. 2010 Jul;47(3):221-35. doi: 10.1007/s10858-010-9425-9. Epub 2010 Jun 4.
The C-terminal trigger sequence is essential in the coiled-coil formation of GCN4-p1; its conformational properties are thus of importance for understanding this process at the atomic level. A solution NMR model structure of a peptide, GCN4p16-31, encompassing the GCN4-p1 trigger sequence was proposed a few years ago. Derived using a standard single-structure refinement protocol based on 172 nuclear Overhauser effect (NOE) distance restraints, 14 hydrogen-bond and 11 phi torsional-angle restraints, the resulting set of 20 NMR model structures exhibits regular alpha-helical structure. However, the set slightly violates some measured NOE bounds and does not reproduce all 15 measured (3)J(H(N)-H(Calpha))-coupling constants, indicating that different conformers of GCN4p16-31 might be present in solution. With the aim to resolve structures compatible with all NOE upper distance bounds and (3)J-coupling constants, we executed several structure refinement protocols employing unrestrained and restrained molecular dynamics (MD) simulations with two force fields. We find that only configurational ensembles obtained by applying simultaneously time-averaged NOE distance and (3)J-coupling constant restraining with either force field reproduce all the experimental data. Additionally, analyses of the simulated ensembles show that the conformational variability of GCN4p16-31 in solution admitted by the available set of 187 measured NMR data is larger than represented by the set of the NMR model structures. The conformations of GCN4p16-31 in solution differ in the orientation not only of the side-chains but also of the backbone. The inconsistencies between the NMR model structures and the measured NMR data are due to the neglect of averaging effects and the inclusion of hydrogen-bond and torsional-angle restraints that have little basis in the primary, i.e. measured NMR data.
C 端触发序列对于 GCN4-p1 形成卷曲螺旋至关重要;因此,了解该过程的原子水平结构特征对于理解该过程非常重要。几年前,提出了一个包含 GCN4-p1 触发序列的多肽 GCN4p16-31 的溶液 NMR 模型结构。该模型结构是使用基于 172 个核奥弗豪瑟效应(NOE)距离约束、14 个氢键和 11 个 phi 扭转角约束的标准单结构精修协议推导出来的,该协议得到的 20 个 NMR 模型结构显示出规则的α-螺旋结构。然而,该模型结构集略微违反了一些测量的 NOE 边界,并且不能重现所有 15 个测量的(3)J(H(N)-H(Calpha))-偶合常数,这表明 GCN4p16-31 的不同构象可能存在于溶液中。为了确定与所有 NOE 上限距离和(3)J 偶合常数兼容的结构,我们使用两种力场执行了几个结构精修协议,包括无约束和约束分子动力学(MD)模拟。我们发现,只有通过同时应用时间平均 NOE 距离和(3)J 偶合常数约束的配置集合,才能用两种力场重现所有实验数据。此外,对模拟集合的分析表明,可用的 187 个测量 NMR 数据表示的 GCN4p16-31 的构象变异性大于 NMR 模型结构集表示的变异性。溶液中 GCN4p16-31 的构象不仅在侧链的方向上,而且在骨架的方向上都有所不同。NMR 模型结构与测量 NMR 数据之间的不一致是由于忽略了平均效应以及包含氢键和扭转角约束所致,这些约束在主要的,即测量的 NMR 数据中几乎没有依据。