Suppr超能文献

Resurrecting the ancestral enzymatic role of a modulatory subunit.

作者信息

Ballicora Miguel A, Dubay Jennifer R, Devillers Claire H, Preiss Jack

机构信息

Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.

出版信息

J Biol Chem. 2005 Mar 18;280(11):10189-95. doi: 10.1074/jbc.M413540200. Epub 2005 Jan 4.

Abstract

In the post-genomic era, functional prediction of genes is largely based on sequence similarity searches, but sometimes the homologues bear different roles because of evolutionary adaptations. For instance, the existence of enzyme and non-enzyme homologues poses a difficult case for function prediction and the extent of this phenomenon is just starting to be surveyed. Different evolutionary paths are theoretically possible for the loss or acquisition of enzyme function. Here we studied the ancestral role of a model non-catalytic modulatory subunit. With a rational approach, we "resurrected" enzymatic activity from that subunit to experimentally prove that it derived from a catalytic ancestor. We show that this protein (L subunit ADP-glucose pyrophosphorylase) evolved to have a regulatory role, losing catalytic residues more than 130 million years ago, but preserving, possibly as a by-product, the substrate site architecture. Inactivation of catalytic subunits could be the consequence of a general evolutionary strategy to explore new regulatory roles in hetero-oligomers.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验