Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660.
Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660; Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-Consejo Nacional de Investigaciones Científicas y Técnicas (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas (FBCB) Paraje "El Pozo," Centro Científico Tecnológico (CCT)-Santa Fe, Colectora Ruta Nacional, 168 km 0, 3000 Santa Fe, Argentina.
J Biol Chem. 2019 Jan 25;294(4):1338-1348. doi: 10.1074/jbc.RA118.004246. Epub 2018 Nov 6.
The pathways for biosynthesis of glycogen in bacteria and starch in plants are evolutionarily and biochemically related. They are regulated primarily by ADP-glucose pyrophosphorylase, which evolved to satisfy metabolic requirements of a particular organism. Despite the importance of these two pathways, little is known about the mechanism that controls pyrophosphorylase activity or the location of its allosteric sites. Here, we report pyruvate-bound crystal structures of ADP-glucose pyrophosphorylase from the bacterium , identifying a previously elusive activator site for the enzyme. We found that the tetrameric enzyme binds two molecules of pyruvate in a planar conformation. Each binding site is located in a crevice between the C-terminal domains of two subunits where they stack via a distinct β-helix region. Pyruvate interacts with the side chain of Lys-43 and with the peptide backbone of Ser-328 and Gly-329 from both subunits. These structural insights led to the design of two variants with altered regulatory properties. In one variant (K43A), the allosteric effect was absent, whereas in the other (G329D), the introduced Asp mimicked the presence of pyruvate. The latter generated an enzyme that was preactivated and insensitive to further activation by pyruvate. Our study furnishes a deeper understanding of how glycogen biosynthesis is regulated in bacteria and the mechanism by which transgenic plants increased their starch production. These insights will facilitate rational approaches to enzyme engineering for starch production in crops of agricultural interest and will promote further study of allosteric signal transmission and molecular evolution in this important enzyme family.
细菌中糖原和植物中淀粉的生物合成途径在进化和生物化学上是相关的。它们主要受 ADP-葡萄糖焦磷酸化酶调控,该酶的进化满足了特定生物体的代谢需求。尽管这两种途径非常重要,但人们对控制焦磷酸化酶活性的机制及其变构部位的位置知之甚少。在这里,我们报告了来自细菌的 ADP-葡萄糖焦磷酸化酶的结合有丙酮酸的晶体结构,确定了该酶以前难以捉摸的激活剂部位。我们发现四聚体酶以平面构象结合两个分子的丙酮酸。每个结合位点位于两个亚基的 C 末端结构域之间的裂隙中,通过独特的β-螺旋区域堆叠。丙酮酸与 Lys-43 的侧链以及来自两个亚基的 Ser-328 和 Gly-329 的肽骨架相互作用。这些结构上的见解导致了具有改变的调节性质的两种变体的设计。在一种变体(K43A)中,变构效应不存在,而在另一种变体(G329D)中,引入的 Asp 模拟了丙酮酸的存在。后者产生了一种预先激活且对丙酮酸进一步激活不敏感的酶。我们的研究提供了对细菌中糖原生物合成如何受到调节的更深入了解,以及转基因植物如何增加其淀粉产量的机制。这些见解将有助于为农业上有兴趣的作物中淀粉生产的酶工程提供合理的方法,并将促进对该重要酶家族中变构信号传递和分子进化的进一步研究。