Suppr超能文献

革兰氏阴性菌通过脂多糖抵御抗菌肽的分子机制。

A molecular mechanism for lipopolysaccharide protection of Gram-negative bacteria from antimicrobial peptides.

作者信息

Papo Niv, Shai Yechiel

机构信息

Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

J Biol Chem. 2005 Mar 18;280(11):10378-87. doi: 10.1074/jbc.M412865200. Epub 2005 Jan 4.

Abstract

Cationic antimicrobial peptides serve as the first chemical barrier between all organisms and microbes. One of their main targets is the cytoplasmic membrane of the microorganisms. However, it is not yet clear why some peptides are active against one particular bacterial strain but not against others. Recent studies have suggested that the lipopolysaccharide (LPS) outer membrane is the first protective layer that actually controls peptide binding and insertion into Gram-negative bacteria. In order to shed light on these interactions, we synthesized and investigated a 12-mer amphipathic alpha-helical antimicrobial peptide (K(5)L(7)) and its diastereomer (4D-K(5)L(7)) (containing four d-amino acids). Interestingly, although both peptides strongly bind LPS bilayers and depolarize bacterial cytoplasmic membranes, only the diastereomer kills Gram-negative bacteria. Attenuated total reflectance Fourier transform infrared, CD, and surface plasmon resonance spectroscopies revealed that only the diastereomer penetrates the LPS layer. In contrast, K(5)L(7) binds cooperatively to the polysaccharide chain and the outer phosphate groups. As a result, the self-associated K(5)L(7) is unable to traverse through the tightly packed LPS molecules, revealed by epifluorescence studies with LPS giant unilamellar vesicles. The difference in the peptides' modes of binding is further demonstrated by the ability of the diastereomer to induce LPS miscellization, as shown by transmission electron microscopy. In addition to increasing our understanding of the molecular basis of the protection of bacteria by LPS, this study presents a potential strategy to overcome resistance by LPS, and it should help in the design of antimicrobial peptides for future therapeutic purposes.

摘要

阳离子抗菌肽是所有生物体与微生物之间的第一道化学屏障。它们的主要靶点之一是微生物的细胞质膜。然而,目前尚不清楚为何有些肽对某一特定细菌菌株具有活性,而对其他菌株却没有活性。最近的研究表明,脂多糖(LPS)外膜是实际控制肽与革兰氏阴性菌结合及插入的第一道保护层。为了阐明这些相互作用,我们合成并研究了一种12聚体两亲性α螺旋抗菌肽(K(5)L(7))及其非对映异构体(4D-K(5)L(7))(含有四个d-氨基酸)。有趣的是,尽管这两种肽都能强烈结合LPS双层膜并使细菌细胞质膜去极化,但只有非对映异构体能杀死革兰氏阴性菌。衰减全反射傅里叶变换红外光谱、圆二色光谱和表面等离子体共振光谱显示,只有非对映异构体能够穿透LPS层。相比之下,K(5)L(7)与多糖链和外部磷酸基团协同结合。因此,通过对LPS巨型单层囊泡的落射荧光研究表明,自我缔合的K(5)L(7)无法穿过紧密堆积的LPS分子。透射电子显微镜显示,非对映异构体诱导LPS混合化的能力进一步证明了这两种肽结合模式的差异。除了加深我们对LPS保护细菌的分子基础的理解之外,本研究还提出了一种克服LPS抗性的潜在策略,并且应该有助于设计用于未来治疗目的的抗菌肽。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验