Suppr超能文献

高等植物光合作用系统 I 光捕获复合物的激发能转移动力学。

Excitation-energy transfer dynamics of higher plant photosystem I light-harvesting complexes.

机构信息

Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.

出版信息

Biophys J. 2011 Mar 2;100(5):1372-80. doi: 10.1016/j.bpj.2011.01.030.

Abstract

Photosystem I (PSI) plays a major role in the light reactions of photosynthesis. In higher plants, PSI is composed of a core complex and four outer antennas that are assembled as two dimers, Lhca1/4 and Lhca2/3. Time-resolved fluorescence measurements on the isolated dimers show very similar kinetics. The intermonomer transfer processes are resolved using target analysis. They occur at rates similar to those observed in transfer to the PSI core, suggesting competition between the two transfer pathways. It appears that each dimer is adopting various conformations that correspond to different lifetimes and emission spectra. A special feature of the Lhca complexes is the presence of an absorption band at low energy, originating from an excitonic state of a chlorophyll dimer, mixed with a charge-transfer state. These low-energy bands have high oscillator strengths and they are superradiant in both Lhca1/4 and Lhca2/3. This challenges the view that the low-energy charge-transfer state always functions as a quencher in plant Lhc's and it also challenges previous interpretations of PSI kinetics. The very similar properties of the low-energy states of both dimers indicate that the organization of the involved chlorophylls should also be similar, in disagreement with the available structural data.

摘要

光系统 I(PSI)在光合作用的光反应中起着重要作用。在高等植物中,PSI 由一个核心复合物和四个外部天线组成,这些天线组装成两个二聚体,即 Lhca1/4 和 Lhca2/3。对分离的二聚体的时间分辨荧光测量显示出非常相似的动力学。使用目标分析解析了单体间的转移过程。它们的速率与观察到的向 PSI 核心的转移速率相似,表明两种转移途径之间存在竞争。似乎每个二聚体都采用了不同的构象,这些构象对应于不同的寿命和发射光谱。Lhca 复合物的一个特殊特征是存在一个低能量的吸收带,该吸收带源于叶绿素二聚体的激子态,与电荷转移态混合。这些低能带具有高振子强度,并且在 Lhca1/4 和 Lhca2/3 中都是超辐射的。这挑战了低能量电荷转移态在植物 LHC 中总是作为猝灭剂的观点,也挑战了以前对 PSI 动力学的解释。两个二聚体的低能态非常相似的性质表明,所涉及的叶绿素的组织也应该相似,这与现有的结构数据不一致。

相似文献

1
Excitation-energy transfer dynamics of higher plant photosystem I light-harvesting complexes.
Biophys J. 2011 Mar 2;100(5):1372-80. doi: 10.1016/j.bpj.2011.01.030.
3
Excitation decay pathways of Lhca proteins: a time-resolved fluorescence study.
J Phys Chem B. 2005 Nov 10;109(44):21150-8. doi: 10.1021/jp0519316.
4
Excitation energy trapping in photosystem I complexes depleted in Lhca1 and Lhca4.
FEBS Lett. 2005 Aug 29;579(21):4787-91. doi: 10.1016/j.febslet.2005.06.091.
5
The role of the individual Lhcas in photosystem I excitation energy trapping.
Biophys J. 2011 Aug 3;101(3):745-54. doi: 10.1016/j.bpj.2011.06.045.
7
On the spectral properties and excitation dynamics of long-wavelength chlorophylls in higher-plant photosystem I.
Biochim Biophys Acta Bioenerg. 2020 Nov 1;1861(11):148274. doi: 10.1016/j.bbabio.2020.148274. Epub 2020 Jul 23.
8
The location of the low-energy states in Lhca1 favors excitation energy transfer to the core in the plant PSI-LHCI supercomplex.
Photosynth Res. 2023 Apr;156(1):59-74. doi: 10.1007/s11120-022-00979-8. Epub 2022 Nov 14.

引用本文的文献

1
Environment-dependent chlorophyll-chlorophyll charge transfer states in Lhca4 pigment-protein complex.
Front Plant Sci. 2024 Aug 7;15:1412750. doi: 10.3389/fpls.2024.1412750. eCollection 2024.
2
Origin of Low-Lying Red States in the Lhca4 Light-Harvesting Complex of Photosystem I.
J Phys Chem Lett. 2023 Sep 21;14(37):8345-8352. doi: 10.1021/acs.jpclett.3c02091. Epub 2023 Sep 13.
3
Spectral diversity of photosystem I from flowering plants.
Photosynth Res. 2023 Jan;155(1):35-47. doi: 10.1007/s11120-022-00971-2. Epub 2022 Oct 19.
8
Light-harvesting complexes access analogue emissive states in different environments.
Chem Sci. 2020 May 18;11(22):5697-5709. doi: 10.1039/d0sc00781a. eCollection 2020 Jun 14.
9
Light-harvesting complex II is an antenna of photosystem I in dark-adapted plants.
Nat Plants. 2020 Jul;6(7):860-868. doi: 10.1038/s41477-020-0693-4. Epub 2020 Jun 22.
10
Generation of ion-radical chlorophyll states in the light-harvesting antenna and the reaction center of cyanobacterial photosystem I.
Photosynth Res. 2020 Dec;146(1-3):55-73. doi: 10.1007/s11120-020-00731-0. Epub 2020 Mar 6.

本文引用的文献

3
Fluorescence spectral dynamics of single LHCII trimers.
Biophys J. 2010 Jun 16;98(12):3093-101. doi: 10.1016/j.bpj.2010.03.028.
4
Photosystem I light-harvesting complex Lhca4 adopts multiple conformations: Red forms and excited-state quenching are mutually exclusive.
Biochim Biophys Acta. 2010 Apr;1797(4):501-8. doi: 10.1016/j.bbabio.2010.01.015. Epub 2010 Jan 25.
5
Structure determination and improved model of plant photosystem I.
J Biol Chem. 2010 Jan 29;285(5):3478-86. doi: 10.1074/jbc.M109.072645. Epub 2009 Nov 18.
7
The role of Lhca complexes in the supramolecular organization of higher plant photosystem I.
J Biol Chem. 2009 Mar 20;284(12):7803-10. doi: 10.1074/jbc.M808395200. Epub 2009 Jan 12.
8
Picosecond fluorescence of intact and dissolved PSI-LHCI crystals.
Biophys J. 2008 Dec 15;95(12):5851-61. doi: 10.1529/biophysj.108.140467. Epub 2008 Oct 17.
9
Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching.
FEBS Lett. 2008 Oct 29;582(25-26):3625-31. doi: 10.1016/j.febslet.2008.09.044. Epub 2008 Oct 1.
10
Trap-limited charge separation kinetics in higher plant photosystem I complexes.
Biophys J. 2008 May 1;94(9):3601-12. doi: 10.1529/biophysj.107.117101. Epub 2008 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验