Neuhoff Henrike, Sassoè-Pognetto Marco, Panzanelli Patrizia, Maas Christoph, Witke Walter, Kneussel Matthias
Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, University of Hamburg, Falkenried 94, D-20251 Hamburg, Germany.
Eur J Neurosci. 2005 Jan;21(1):15-25. doi: 10.1111/j.1460-9568.2004.03814.x.
Morphological changes at synaptic specializations have been implicated in regulating synaptic strength. Actin turnover at dendritic spines is regulated by neuronal activity and contributes to spine size, shape and motility. The reorganization of actin filaments requires profilins, which stimulate actin polymerization. Neurons express two independent gene products - profilin I and profilin II. A role for profilin II in activity-dependent mechanisms at spine synapses has recently been described. Although profilin I interacts with synaptic proteins, little is known about its cellular and subcellular localization in neurons. Here, we investigated the subcellular distribution of this protein in brain neurons as well as in hippocampal cultures. Our results indicate that the expression of profilin I varies in different brain regions. Thus, in cerebral cortex and hippocampus profilin I immunostaining was associated predominantly with dendrites and was present in a subset of dendritic spines. In contrast, profilin I in cerebellum was associated primarily with presynaptic structures. Profilin I immunoreactivity was partially colocalized with the synaptic molecules synaptophysin, PSD-95 and gephyrin in cultured hippocampal neurons, indicating that profilin I is present in only a subset of synapses. At dendritic spine structures, profilin I was found primarily in protrusions, which were in apposition to presynaptic terminal boutons. Remarkably, depolarization with KCl caused a moderate but significant increase in the number of synapses containing profilin I. These results show that profilin I can be present at both pre- and postsynaptic sites and suggest a role for this actin-binding protein in activity-dependent remodelling of synaptic structure.
突触特化处的形态学变化与调节突触强度有关。树突棘处的肌动蛋白周转受神经元活动调控,并影响棘的大小、形状和运动性。肌动蛋白丝的重组需要肌动蛋白结合蛋白,其可刺激肌动蛋白聚合。神经元表达两种独立的基因产物——肌动蛋白结合蛋白I和肌动蛋白结合蛋白II。最近已描述了肌动蛋白结合蛋白II在棘突触处的活动依赖机制中的作用。尽管肌动蛋白结合蛋白I与突触蛋白相互作用,但其在神经元中的细胞和亚细胞定位却知之甚少。在此,我们研究了该蛋白在脑神经元以及海马培养物中的亚细胞分布。我们的结果表明,肌动蛋白结合蛋白I的表达在不同脑区有所不同。因此,在大脑皮层和海马中,肌动蛋白结合蛋白I免疫染色主要与树突相关,并存在于一部分树突棘中。相比之下,小脑中的肌动蛋白结合蛋白I主要与突触前结构相关。在培养的海马神经元中,肌动蛋白结合蛋白I免疫反应性与突触分子突触素、突触后密度蛋白95和gephyrin部分共定位,表明肌动蛋白结合蛋白I仅存在于一部分突触中。在树突棘结构处,肌动蛋白结合蛋白I主要存在于与突触前终末小体相邻的突起中。值得注意的是,用氯化钾去极化导致含有肌动蛋白结合蛋白I的突触数量适度但显著增加。这些结果表明,肌动蛋白结合蛋白I可存在于突触前和突触后位点,并提示这种肌动蛋白结合蛋白在突触结构的活动依赖重塑中发挥作用。