Rami Guillaume, Caillard Olivier, Medina Igor, Pellegrino Christophe, Fattoum Abdellatif, Ben-Ari Yezekiel, Ferhat Lotfi
INMED/INSERM U29, 163 rue de Luminy, BP 13, 13273, Marseille Cedex 09, France.
Hippocampus. 2006;16(2):183-97. doi: 10.1002/hipo.20145.
Dendritic spines are morphing structures believed to provide a cellular substrate for synaptic plasticity. It has been suggested that the actin cytoskeleton is the target of molecular mechanisms regulating spine morphology. Here we hypothesized that acidic calponin, an actin-binding protein, is one of the key regulators of actin filaments during spine plasticity. Our data showed that the overexpression of acidic calponin-GFP (green fluorescent protein) in primary cultures of rat hippocampal neurons causes an elongation of spines and an increase of their density as compared with those of GFP-expressing neurons. These effects required the actin-binding domains of acidic calponin. The close apposition of the presynatic marker synaptophysin to these long spines and the presence of specific postsynaptic markers actin, PSD-95, NR1, and GluR1 suggested the existence of functional excitatory synaptic contacts. Indeed, electrophysiological data showed that the postsynaptic overexpression of acidic calponin enhanced the frequency of miniature excitatory postsynaptic currents as compared with that of GFP-expressing neurons, but did not affect their properties such as amplitude, rise time, and half width. Studies in heterologous cells revealed that acidic calponin reorganized the actin filaments and stabilized them. Taken together, these findings show that acidic calponin regulates dendritic spine morphology and density, likely via regulation of the actin cytoskeleton reorganization and dynamic. Furthermore, the acidic calponin-induced spines are able to establish functional glutamatergic synapses. Such data suggest that acidic calponin is a key factor in the regulation of spine plasticity and synaptic activity.
树突棘是形态可变的结构,被认为为突触可塑性提供细胞基础。有人提出,肌动蛋白细胞骨架是调节棘形态的分子机制的靶点。在这里,我们假设酸性钙调蛋白,一种肌动蛋白结合蛋白,是棘可塑性过程中肌动蛋白丝的关键调节因子之一。我们的数据表明,在大鼠海马神经元原代培养物中过表达酸性钙调蛋白-绿色荧光蛋白(GFP)会导致棘伸长,并且与表达GFP的神经元相比,其密度增加。这些效应需要酸性钙调蛋白的肌动蛋白结合结构域。突触前标志物突触素与这些长棘紧密相邻,以及特定的突触后标志物肌动蛋白、PSD-95、NR1和GluR1的存在表明存在功能性兴奋性突触联系。实际上,电生理数据表明,与表达GFP的神经元相比,酸性钙调蛋白的突触后过表达增加了微小兴奋性突触后电流的频率,但不影响其幅度、上升时间和半宽度等特性。在异源细胞中的研究表明,酸性钙调蛋白重组了肌动蛋白丝并使其稳定。综上所述,这些发现表明酸性钙调蛋白可能通过调节肌动蛋白细胞骨架的重组和动态变化来调节树突棘的形态和密度。此外,酸性钙调蛋白诱导的棘能够建立功能性谷氨酸能突触。这些数据表明酸性钙调蛋白是调节棘可塑性和突触活动的关键因素。