Nakahata Yoshihisa, Yasuda Ryohei
Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience (MPFI), Jupiter, FL, United States.
Front Synaptic Neurosci. 2018 Aug 29;10:29. doi: 10.3389/fnsyn.2018.00029. eCollection 2018.
Dendritic spines are small protrusive structures on dendritic surfaces, and function as postsynaptic compartments for excitatory synapses. Plasticity of spine structure is associated with many forms of long-term neuronal plasticity, learning and memory. Inside these small dendritic compartments, biochemical states and protein-protein interactions are dynamically modulated by synaptic activity, leading to the regulation of protein synthesis and reorganization of cytoskeletal architecture. This in turn causes plasticity of structure and function of the spine. Technical advances in monitoring molecular behaviors in single dendritic spines have revealed that each signaling pathway is differently regulated across multiple spatiotemporal domains. The spatial pattern of signaling activity expands from a single spine to the nearby dendritic area, dendritic branch and the nucleus, regulating different cellular events at each spatial scale. Temporally, biochemical events are typically triggered by short Ca pulses (~10-100 ms). However, these signals can then trigger activation of downstream protein cascades that can last from milliseconds to hours. Recent imaging studies provide many insights into the biochemical processes governing signaling events of molecular assemblies at different spatial localizations. Here, we highlight recent findings of signaling dynamics during synaptic plasticity and discuss their roles in long-term structural plasticity of dendritic spines.
树突棘是树突表面的小突起结构,作为兴奋性突触的突触后区室发挥作用。树突棘结构的可塑性与多种形式的长期神经元可塑性、学习和记忆相关。在这些小的树突区室内,生化状态和蛋白质 - 蛋白质相互作用受到突触活动的动态调节,从而导致蛋白质合成的调节和细胞骨架结构的重组。这进而引起树突棘结构和功能的可塑性。监测单个树突棘中分子行为的技术进步表明,每个信号通路在多个时空域中受到不同的调节。信号活动的空间模式从单个树突棘扩展到附近的树突区域、树突分支和细胞核,在每个空间尺度上调节不同的细胞事件。在时间上,生化事件通常由短暂的钙脉冲(约10 - 100毫秒)触发。然而,这些信号随后可以触发下游蛋白质级联反应的激活,其持续时间可以从毫秒到数小时。最近的成像研究为不同空间定位的分子组装信号事件的生化过程提供了许多见解。在这里,我们重点介绍突触可塑性期间信号动力学的最新发现,并讨论它们在树突棘长期结构可塑性中的作用。