Sobott Frank, McCammon Margaret G, Hernández Helena, Robinson Carol V
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
Philos Trans A Math Phys Eng Sci. 2005 Feb 15;363(1827):379-89; discussion 389-91. doi: 10.1098/rsta.2004.1498.
The discovery that conditions can be found such that non-covalent macromolecular complexes can survive the transition from solution to gas phase and remain intact during their flight in a mass spectrometer is an intriguing observation. While the nature of the interaction between the components, either ionic, hydrophobic or van der Waals, undoubtedly has an effect on the stability of these gas phase species, the role of small molecules in conferring additional stability is often overlooked. Here we review historical aspects of the development of mass spectrometry for macromolecular complexes with particular focus on the role of small molecules in stabilizing gas-phase complexes. Moreover, we demonstrate how the dissociation of small molecules from subunits within a macromolecular complex can be used to probe the topological arrangement. Overall, therefore, we show that mass spectrometry used in this way is capable of addressing features of the energy landscape not readily accessed by traditional structural biology approaches.
发现存在这样的条件,即非共价大分子复合物能够在从溶液到气相的转变中存活下来,并在质谱仪飞行过程中保持完整,这是一个引人入胜的观察结果。虽然组分之间相互作用的性质,无论是离子性、疏水性还是范德华力,无疑会对这些气相物种的稳定性产生影响,但小分子在赋予额外稳定性方面的作用常常被忽视。在这里,我们回顾了用于大分子复合物的质谱技术发展的历史方面,特别关注小分子在稳定气相复合物中的作用。此外,我们展示了小分子从大分子复合物亚基上解离如何可用于探测拓扑排列。因此,总体而言,我们表明以这种方式使用的质谱能够解决传统结构生物学方法不易触及的能量景观特征。