Tobita Kimimasa, Garrison Jason B, Liu Li J, Tinney Joseph P, Keller Bradley B
Division of Pediatric Cardiology, Cardiovascular Development Research Program, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15213, USA.
Anat Rec A Discov Mol Cell Evol Biol. 2005 Mar;283(1):193-201. doi: 10.1002/ar.a.20133.
Mechanical load influences embryonic ventricular growth, morphogenesis, and function. To date, little is known regarding how the embryonic left ventricular (LV) myocardium acquires a three-dimensional (3D) fiber architecture distribution or how altered mechanical load influences local myofiber architecture. We tested the hypothesis that altered mechanical load changes the maturation process of local 3D fiber architecture of the developing embryonic LV compact myocardium. We measured transmural myofiber angle distribution in the LV compact myocardium in Hamburger-Hamilton stages 21, 27, 31, and 36 chick embryos during normal development or following either left atrial ligation (LAL; LV hypoplasia model) or conotruncal banding (CTB; LV hyperplasia model). The embryonic LV was stained with f-actin and then z-serial optical sectioning was performed using a laser confocal scanning microscope. We reconstructed local 3D myofiber images and computed local transmural myofiber angle distribution. Transmural myofiber angles in compact myocardium (in LV sagittal sections) were oriented in a circumferential direction until stage 27 (-10 to 10 degrees). Myofibers in the outer side of compact myocardium shifted to a more longitudinal direction by stage 36 (10 to 40 degrees), producing a transmural gradient in myofiber orientation. Developmental changes in transmural myofiber angle distribution were significantly delayed following LAL, while the changes in angle distribution were accelerated following CTB. Results suggest that mechanical load modulates the maturation process of myofiber architecture distribution in the developing LV compact myocardium.
机械负荷会影响胚胎心室的生长、形态发生和功能。迄今为止,关于胚胎左心室(LV)心肌如何获得三维(3D)纤维结构分布,或者机械负荷改变如何影响局部肌纤维结构,我们知之甚少。我们验证了这样一个假设,即机械负荷的改变会改变发育中的胚胎左心室致密心肌局部3D纤维结构的成熟过程。我们测量了正常发育过程中或在左心房结扎(LAL;左心室发育不全模型)或圆锥干束带术(CTB;左心室增生模型)后,处于汉伯格-汉密尔顿第21、27、31和36阶段的鸡胚左心室致密心肌的跨壁肌纤维角度分布。用f-肌动蛋白对胚胎左心室进行染色,然后使用激光共聚焦扫描显微镜进行z系列光学切片。我们重建了局部3D肌纤维图像,并计算了局部跨壁肌纤维角度分布。致密心肌(在左心室矢状切面中)的跨壁肌纤维角度在第27阶段之前呈圆周方向排列(-10至10度)。到第36阶段时,致密心肌外侧的肌纤维转向更纵向的方向(10至40度),从而在肌纤维方向上产生跨壁梯度。LAL后,跨壁肌纤维角度分布的发育变化显著延迟,而CTB后角度分布的变化加速。结果表明,机械负荷调节发育中的左心室致密心肌中肌纤维结构分布的成熟过程。