Suppr超能文献

左心室生长与重塑的多尺度模拟

Multiscale simulations of left ventricular growth and remodeling.

作者信息

Sharifi Hossein, Mann Charles K, Rockward Alexus L, Mehri Mohammad, Mojumder Joy, Lee Lik-Chuan, Campbell Kenneth S, Wenk Jonathan F

机构信息

Department of Mechanical Engineering, University of Kentucky, 269 Ralph G. Anderson Building, Lexington, KY 40506-0503 USA.

Department of Mechanical Engineering, Michigan State University, East Lansing, MI USA.

出版信息

Biophys Rev. 2021 Aug 25;13(5):729-746. doi: 10.1007/s12551-021-00826-5. eCollection 2021 Oct.

Abstract

Cardiomyocytes can adapt their size, shape, and orientation in response to altered biomechanical or biochemical stimuli. The process by which the heart undergoes structural changes-affecting both geometry and material properties-in response to altered ventricular loading, altered hormonal levels, or mutant sarcomeric proteins is broadly known as cardiac growth and remodeling (G&R). Although it is likely that cardiac G&R initially occurs as an adaptive response of the heart to the underlying stimuli, prolonged pathological changes can lead to increased risk of atrial fibrillation, heart failure, and sudden death. During the past few decades, computational models have been extensively used to investigate the mechanisms of cardiac G&R, as a complement to experimental measurements. These models have provided an opportunity to quantitatively study the relationships between the underlying stimuli (primarily mechanical) and the adverse outcomes of cardiac G&R, i.e., alterations in ventricular size and function. State-of-the-art computational models have shown promise in predicting the progression of cardiac G&R. However, there are still limitations that need to be addressed in future works to advance the field. In this review, we first outline the current state of computational models of cardiac growth and myofiber remodeling. Then, we discuss the potential limitations of current models of cardiac G&R that need to be addressed before they can be utilized in clinical care. Finally, we briefly discuss the next feasible steps and future directions that could advance the field of cardiac G&R.

摘要

心肌细胞能够根据改变的生物力学或生化刺激来调整其大小、形状和方向。心脏因心室负荷改变、激素水平改变或肌节蛋白突变而经历影响几何形状和材料特性的结构变化的过程,被广泛称为心脏生长和重塑(G&R)。尽管心脏G&R最初可能是心脏对潜在刺激的适应性反应,但长期的病理变化会导致心房颤动、心力衰竭和猝死风险增加。在过去几十年中,计算模型作为实验测量的补充,已被广泛用于研究心脏G&R的机制。这些模型为定量研究潜在刺激(主要是机械刺激)与心脏G&R的不良后果(即心室大小和功能的改变)之间的关系提供了机会。最先进的计算模型在预测心脏G&R的进展方面已显示出前景。然而,仍存在一些局限性,需要在未来的工作中加以解决,以推动该领域的发展。在这篇综述中,我们首先概述心脏生长和肌纤维重塑计算模型的当前状态。然后,我们讨论当前心脏G&R模型在应用于临床护理之前需要解决的潜在局限性。最后,我们简要讨论可以推动心脏G&R领域发展的下一个可行步骤和未来方向。

相似文献

1
Multiscale simulations of left ventricular growth and remodeling.左心室生长与重塑的多尺度模拟
Biophys Rev. 2021 Aug 25;13(5):729-746. doi: 10.1007/s12551-021-00826-5. eCollection 2021 Oct.
4
Modeling of cardiac growth and remodeling of myofiber orientation.心肌纤维方向的心脏生长和重构建模。
J Biomech. 2012 Mar 15;45(5):872-81. doi: 10.1016/j.jbiomech.2011.11.029. Epub 2011 Dec 12.
10
Computational models of cardiac hypertrophy.心脏肥大的计算模型。
Prog Biophys Mol Biol. 2021 Jan;159:75-85. doi: 10.1016/j.pbiomolbio.2020.07.001. Epub 2020 Jul 21.

引用本文的文献

9
Effects of cardiac growth on electrical dyssynchrony in the single ventricle patient.心脏生长对单心室患者电不同步的影响。
Comput Methods Biomech Biomed Engin. 2024 Jun;27(8):1011-1027. doi: 10.1080/10255842.2023.2222203. Epub 2023 Jun 14.

本文引用的文献

4
Multiscale modeling meets machine learning: What can we learn?多尺度建模与机器学习相遇:我们能学到什么?
Arch Comput Methods Eng. 2021 May;28(3):1017-1037. doi: 10.1007/s11831-020-09405-5. Epub 2020 Feb 17.
6
Mechanical stimuli for left ventricular growth during pressure overload.压力过载期间左心室生长的机械刺激。
Exp Mech. 2021 Jan;61(1):131-146. doi: 10.1007/s11340-020-00643-z. Epub 2020 Aug 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验