Suppr超能文献

一种用于推导局部胞质Ca2+瞬变背后Ca2+通量的与模型无关的算法。

A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients.

作者信息

Ventura Alejandra C, Bruno Luciana, Demuro Angelo, Parker Ian, Dawson Silvina Ponce

机构信息

Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

出版信息

Biophys J. 2005 Apr;88(4):2403-21. doi: 10.1529/biophysj.104.045260. Epub 2005 Jan 28.

Abstract

Local intracellular Ca(2+) signals result from Ca(2+) flux into the cytosol through individual channels or clusters of channels. To gain a mechanistic understanding of these events we need to know the magnitude and spatial distribution of the underlying Ca(2+) flux. However, this is difficult to infer from fluorescence Ca(2+) images because the distribution of Ca(2+)-bound dye is affected by poorly characterized processes including diffusion of Ca(2+) ions, their binding to mobile and immobile buffers, and sequestration by Ca(2+) pumps. Several methods have previously been proposed to derive Ca(2+) flux from fluorescence images, but all require explicit knowledge or assumptions regarding these processes. We now present a novel algorithm that requires few assumptions and is largely model-independent. By testing the algorithm with both numerically generated image data and experimental images of sparklets resulting from Ca(2+) flux through individual voltage-gated channels, we show that it satisfactorily reconstructs the magnitude and time course of the underlying Ca(2+) currents.

摘要

局部细胞内钙离子信号是由钙离子通过单个通道或通道簇流入细胞质溶胶而产生的。为了从机制上理解这些事件,我们需要了解潜在钙离子通量的大小和空间分布。然而,这很难从荧光钙离子图像中推断出来,因为与钙离子结合的染料的分布会受到一些特征不明的过程的影响,这些过程包括钙离子的扩散、它们与移动和固定缓冲剂的结合以及被钙离子泵隔离。此前已经提出了几种从荧光图像中推导钙离子通量的方法,但所有这些方法都需要关于这些过程的明确知识或假设。我们现在提出一种新算法,该算法几乎不需要假设,并且在很大程度上与模型无关。通过用数值生成的图像数据以及由钙离子通过单个电压门控通道产生的小火花的实验图像对该算法进行测试,我们表明它能够令人满意地重建潜在钙离子电流的大小和时间进程。

相似文献

1
A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients.
Biophys J. 2005 Apr;88(4):2403-21. doi: 10.1529/biophysj.104.045260. Epub 2005 Jan 28.
3
Fast kinetics of calcium liberation induced in Xenopus oocytes by photoreleased inositol trisphosphate.
Biophys J. 1996 Jan;70(1):222-37. doi: 10.1016/S0006-3495(96)79565-6.
4
The number and spatial distribution of IP3 receptors underlying calcium puffs in Xenopus oocytes.
Biophys J. 2006 Dec 1;91(11):4033-44. doi: 10.1529/biophysj.106.088880. Epub 2006 Sep 15.
5
On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves.
Biophys J. 1995 Nov;69(5):2139-53. doi: 10.1016/S0006-3495(95)80088-3.
6
Two-dimensional determination of the cellular Ca2+ binding in bovine chromaffin cells.
Biophys J. 1998 Oct;75(4):1635-47. doi: 10.1016/S0006-3495(98)77606-4.
7
Two-dimensional model of calcium waves reproduces the patterns observed in Xenopus oocytes.
Biophys J. 1992 Feb;61(2):509-17. doi: 10.1016/S0006-3495(92)81855-6.
8
A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte.
Biophys J. 1993 Oct;65(4):1727-39. doi: 10.1016/S0006-3495(93)81191-3.
9
Buffer kinetics shape the spatiotemporal patterns of IP3-evoked Ca2+ signals.
J Physiol. 2003 Dec 15;553(Pt 3):775-88. doi: 10.1113/jphysiol.2003.054247. Epub 2003 Oct 10.
10

引用本文的文献

1
Biological physics to uncover cell signaling.
Biophys Rev. 2025 Apr 10;17(2):271-283. doi: 10.1007/s12551-025-01308-8. eCollection 2025 Apr.
2
High rates of calcium-free diffusion in the cytosol of living cells.
Biophys J. 2021 Sep 21;120(18):3960-3972. doi: 10.1016/j.bpj.2021.08.019. Epub 2021 Aug 26.
3
Fluorescence fluctuations and equivalence classes of Ca²⁺ imaging experiments.
PLoS One. 2014 Apr 28;9(4):e95860. doi: 10.1371/journal.pone.0095860. eCollection 2014.
4
Inverse problems in neuronal calcium signaling.
J Math Biol. 2013 Jul;67(1):3-23. doi: 10.1007/s00285-012-0507-z.
5
Mean field strategies induce unrealistic non-linearities in calcium puffs.
Front Physiol. 2011 Aug 1;2:46. doi: 10.3389/fphys.2011.00046. eCollection 2011.
7
Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes.
Cell Calcium. 2010 Mar;47(3):273-86. doi: 10.1016/j.ceca.2009.12.012. Epub 2010 Jan 25.
8
Multi-dimensional resolution of elementary Ca2+ signals by simultaneous multi-focal imaging.
Cell Calcium. 2008 Apr;43(4):367-74. doi: 10.1016/j.ceca.2007.07.002. Epub 2007 Aug 22.
9
Imaging single-channel calcium microdomains.
Cell Calcium. 2006 Nov-Dec;40(5-6):413-22. doi: 10.1016/j.ceca.2006.08.006. Epub 2006 Oct 25.
10
The number and spatial distribution of IP3 receptors underlying calcium puffs in Xenopus oocytes.
Biophys J. 2006 Dec 1;91(11):4033-44. doi: 10.1529/biophysj.106.088880. Epub 2006 Sep 15.

本文引用的文献

4
Comparison of simulated and measured calcium sparks in intact skeletal muscle fibers of the frog.
J Gen Physiol. 2002 Sep;120(3):349-68. doi: 10.1085/jgp.20028620.
5
Initiation and termination of calcium sparks in skeletal muscle.
Front Biosci. 2002 May 1;7:d1212-1222. doi: 10.2741/A834.
6
Estimation of the sarcoplasmic reticulum Ca2+ release flux underlying Ca2+ sparks.
Biophys J. 2002 May;82(5):2396-414. doi: 10.1016/S0006-3495(02)75584-7.
7
Large currents generate cardiac Ca2+ sparks.
Biophys J. 2001 Jan;80(1):88-102. doi: 10.1016/S0006-3495(01)75997-8.
8
Calcium release flux underlying Ca2+ sparks of frog skeletal muscle.
J Gen Physiol. 1999 Jul;114(1):31-48. doi: 10.1085/jgp.114.1.31.
9
Classification of strange attractors by integers.
Phys Rev Lett. 1990 May 14;64(20):2350-2353. doi: 10.1103/PhysRevLett.64.2350.
10
Reconstruction of vector fields: The case of the Lorenz system.
Phys Rev A. 1992 Aug 15;46(4):1784-1796. doi: 10.1103/physreva.46.1784.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验